in

Past climate conditions predict the influence of nitrogen enrichment on the temperature sensitivity of soil respiration

  • 1.

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    CAS 

    Google Scholar 

  • 2.

    Raich, J. W., Potter, C. S. & Bhagawati, D. Interannual variability in global soil respiration, 1980–94. Glob. Change Biol. 8, 800–812 (2002).

    Google Scholar 

  • 3.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS 

    Google Scholar 

  • 4.

    Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).

    CAS 

    Google Scholar 

  • 5.

    Heimann, H. & Reichstein, R. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    CAS 

    Google Scholar 

  • 6.

    Fang, C. et al. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agr. Forest Meteorol. 248, 449–457 (2018).

    Google Scholar 

  • 7.

    Wang, Q., Liu, S., Wang, Y., Tian, P. & Sun, T. Influences of N deposition on soil microbial respiration and its temperature sensitivity depend on N type in a temperate forest. Agr. Forest Meteorol. 260–261, 240–246 (2018).

    Google Scholar 

  • 8.

    Zhong, Y. Q. W., Yan, W. M., Zong, Y. Z. & Shangguan, Z. P. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Global Ecol. Biogeogr. 25, 475–488 (2016).

    Google Scholar 

  • 9.

    Yu, G. R. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).

    CAS 

    Google Scholar 

  • 10.

    Coucheney, E., Strömgren, M., Lerch, T. Z. & Herrmann, A. M. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization. Ecol. Evol. 3, 5177–5188 (2013).

    Google Scholar 

  • 11.

    Jiang, J. S., Guo, S. L., Wang, R., Liu, Q. F. & Sun, Q. Q. Effects of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on loess plateau. Environ. Sci. 36, 1802–1809 (2015).

    Google Scholar 

  • 12.

    Wang, Q., Zhao, X., Tian, P., Liu, S. & Sun, Z. Bioclimate and arbuscular mycorrhizal fungi regulate continental biogeographic variations in effect of nitrogen deposition on the temperature sensitivity of soil organic carbon decomposition. Land Degrad. Dev. 32, 936–945 (2021).

    Google Scholar 

  • 13.

    Schindlbacher, A., Zechmeister-Boltenstern, S. & Jandl, R. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob. Change Biol. 15, 901–903 (2009).

    Google Scholar 

  • 14.

    Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. 113, 13797–13802 (2016).

    CAS 

    Google Scholar 

  • 15.

    Lyu, M., Giardina, C. P. & Litton, C. M. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest. Glob. Change Biol. 27, 3824–3836 (2021).

    Google Scholar 

  • 16.

    Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct. Ecol. 33, 514–523 (2019).

    Google Scholar 

  • 17.

    Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).

    Google Scholar 

  • 18.

    Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).

    Google Scholar 

  • 19.

    Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).

    Google Scholar 

  • 20.

    Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596 (2018).

    Google Scholar 

  • 21.

    Ding, J. Y. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. 39, 125460 (2019).

    Google Scholar 

  • 22.

    Eldridge, D. J. & Delgado-Baquerizo, M. The influence of climatic legacies on the distribution of dryland biocrust communities. Glob. Change Biol. 25, 327–336 (2019).

    Google Scholar 

  • 23.

    Pärtel, M., Chiarucci, A., Chytrý, M. & Pillar, V. D. Mapping plant community ecology. J. Veg. Sci. 26, 1–3 (2017).

    Google Scholar 

  • 24.

    Richter, D. D. & Yaalon, D. H. “The changing model of soil” revisited. Soil Sci. Soc. Am. J. 76, 766–778 (2012).

    CAS 

    Google Scholar 

  • 25.

    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).

    Google Scholar 

  • 26.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    CAS 

    Google Scholar 

  • 27.

    Delgado-Baquerizo, M. et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 86, 373–390 (2016).

    Google Scholar 

  • 28.

    Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J. & Singh, B. K. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. 112, 15684–15689 (2015).

    CAS 

    Google Scholar 

  • 29.

    Monger, C. et al. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19 (2016).

    Google Scholar 

  • 30.

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    CAS 

    Google Scholar 

  • 31.

    Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy. 20, GB3026 (2006).

    Google Scholar 

  • 32.

    Peng, S., Piao, S., Wang, T., Sun, J. & Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 41, 1008–1014 (2009).

    CAS 

    Google Scholar 

  • 33.

    Xu, Z. et al. Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Appl. Soil Ecol. 93, 105–110 (2015).

    Google Scholar 

  • 34.

    Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).

    Google Scholar 

  • 35.

    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    CAS 

    Google Scholar 

  • 36.

    Yan, G. Y. et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition. Agr. Forest Meteorol. 248, 70–81 (2018).

    Google Scholar 

  • 37.

    Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    CAS 

    Google Scholar 

  • 38.

    Chen, Z. M. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).

    CAS 

    Google Scholar 

  • 39.

    Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest Meteorol. 271, 336–345 (2019).

    Google Scholar 

  • 40.

    Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).

    CAS 

    Google Scholar 

  • 41.

    Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).

    CAS 

    Google Scholar 

  • 42.

    Li, Y. et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 615, 1535–1546 (2018).

    CAS 

    Google Scholar 

  • 43.

    Sanderman, J. Comment on “Climate legacies drive global soil carbon stocks in terrestrial ecosystems”. Sci. Adv. 4, e1701482 (2018).

    Google Scholar 

  • 44.

    Ding, J. et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun. 10, 4195 (2019).

    Google Scholar 

  • 45.

    Gershenson, A., Bader, N. E. & Cheng, W. X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Change Biol. 15, 176–183 (2009).

    Google Scholar 

  • 46.

    Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).

    CAS 

    Google Scholar 

  • 47.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Google Scholar 

  • 48.

    Li, J., Ziegler, S. E., Lane, C. S. & Billings, S. A. Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature. Soil Biol. Biochem. 66, 204–213 (2013).

    CAS 

    Google Scholar 

  • 49.

    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Chang. Biol. 27, 2061–2075 (2021).

    Google Scholar 

  • 50.

    Du, Y. et al. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. Glob. Chang. Biol. 26, 6015–6024 (2020).

    Google Scholar 

  • 51.

    Meier, I. C. & Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11, 655–669 (2008).

    CAS 

    Google Scholar 

  • 52.

    Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).

    CAS 

    Google Scholar 

  • 53.

    Katz, M. H. Multivariable Analysis: A Practical Guide for Clinicians and Public Health Researchers (Cambridge Univ. Press, Cambridge, 2006).

  • 54.

    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. 112, 10967–10972 (2015).

    CAS 

    Google Scholar 

  • 55.

    Grace, J. B. Structural Equation Modeling Natural Systems (Cambridge Univ. Press, Cambridge, 2006).

  • 56.

    Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol 7, 573–579 (2016).

    Google Scholar 

  • 57.

    Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–13 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    A constraint on historic growth in global photosynthesis due to increasing CO2

    A tool to speed development of new solar cells