in

Past, present, and future climate space of the only endemic vertebrate genus of the Italian peninsula

  • 1.

    Hewitt, G. H. The genetic legacy of Quaternary ice ages. Nature 405, 907–913 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Hewitt, G. H. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Hauswaldt, J. S. et al. From species divergence to population structure: A multimarker approach on the most basal lineage of Salamandridae, the spectacled salamanders (genus Salamandrina) from Italy. Mol. Phylogenetics Evol. 70, 1–12 (2014).

    Google Scholar 

  • 4.

    Gomez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).

    Google Scholar 

  • 5.

    Hewitt, G. H. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority (eds Zachos, F. E. & Habel, J. C.) 123–148 (Springer, 2011).

    Google Scholar 

  • 6.

    Lanza, B. & Corti, C. Evolution of knowledge on the Italian herpetofauna during the 20th century. Boll. Mus. Civ. St. Nat. Verona 20, 373–436 (1996).

    Google Scholar 

  • 7.

    Sindaco, R., Eremčenko, V. K. & Venchi, A. Mediterranean reptiles: State of knowledge, hot spots, areas of endemism, conservation. In Abstracts of the VI Congress of the Societas Herpetologica Italica (eds Bologna, M.A., Capula, M., Carpaneto, G.M., Luiselli, L., Marangoni, C. & Venchi, A.), (Roma, September 27–October 1 2006), Stilgrafica, Roma, pp. 101–102 (2006).

  • 8.

    Borkin, L. J. Distribution of amphibians in North Africa, Europe, Western Asia and Former Soviet Union. In Patterns of Distribution of Amphibians. A Global Perspective (ed. Duellman, W. E.) 329–420 (Johns Hopkins University Press, 1999).

    Google Scholar 

  • 9.

    Speybroeck, J. et al. Species list of the European herpetofauna–2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia 41, 139–189 (2020).

    Google Scholar 

  • 10.

    Venczel, M. & Sanchíz, B. A fossil plethodontids salamander from the Middle Miocene of Slovakia (Caudata, Plethodontidae). Amphibia-Reptilia 26, 408–411 (2005).

    Google Scholar 

  • 11.

    Venczel, M. & Hír, J. Amphibians and squamates from the Miocene of Felsötárkány Basin, N-Hungary. Palaeontogr. Abt. A 300, 117–158 (2013).

    Google Scholar 

  • 12.

    Georgalis, G. L., Villa, A., Ivanov, M., Vasilyan, D. & Delfino, M. Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontol. Electron. 22, 1–99 (2019).

    Google Scholar 

  • 13.

    Macaluso, L. et al. A progressive extirpation: An overview of the fossil record of Salamandrina (Salamandridae, Urodela). Hist. Biol., 1–18 (2021).

  • 14.

    Delfino, M., Bailon, S. & Pitruzzella, G. The late pliocene amphibians and reptiles from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). Geodiversitas 33(2), 357–382 (2011).

    Google Scholar 

  • 15.

    Lanza, B. Salamandrina terdigitata (Lacépède, 1788): Emblem of the Unione Zoologica Italiana. Boll. Zool. 55, 1–4 (1988).

    Google Scholar 

  • 16.

    Agustí, J. et al. A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Sci. Rev. 52, 247–260 (2001).

    ADS 

    Google Scholar 

  • 17.

    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. P. Roy. Soc. B-Biol. Sci. 277, 661–671 (2010).

    Google Scholar 

  • 18.

    Baselga, A., Lobo, J. M., Svenning, J. C. & Araujo, M. B. Global patterns in the shape of species geographical ranges reveal range determinants. J. Biogeogr. 39, 760–771 (2012).

    Google Scholar 

  • 19.

    Iannella, M., D’Alessandro, P. & Biondi, M. Evidences for a shared history for spectacled salamanders, haplotypes and climate. Sci. Rep. 8(1), 1–11 (2018).

    CAS 

    Google Scholar 

  • 20.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).

    Google Scholar 

  • 21.

    Ficetola, G. F. et al. Knowing the past to predict the future: Land-use change and the distribution of invasive bullfrogs. Glob. Change Biol. 16(2), 528–537 (2010).

    ADS 

    Google Scholar 

  • 22.

    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).

    Google Scholar 

  • 23.

    Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10(1), 1–14 (2019).

    CAS 

    Google Scholar 

  • 24.

    Jones, L. A. et al. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6, 182111 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Moss, R. et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), pp. 132 (2008).

  • 26.

    Wayne, G. P. The beginner’s guide to representative Concentration pathways. Skeptical science Version 1.0 (2013).

  • 27.

    GBIF.org (2021) GBIF Occurrence Download https://doi.org/10.15468/dl.as6sk2.

  • 28.

    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Nat. Sci. Data 5, 180254 (2018).

    Google Scholar 

  • 29.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/.

  • 30.

    Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H, & Zimmermann, N. E. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss., 1–27 (2021).

  • 31.

    Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Hill, D. J. The non-analogue nature of Pliocene temperature gradients. EPSL 425, 232–241 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Dolan, A. M. et al. Modelling the enigmatic late Pliocene glacial event—Marine Isotope Stage M2. Glob. Planet. Change 128, 47–60 (2015).

    ADS 

    Google Scholar 

  • 34.

    Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35(2), 213–226 (2021).

    Google Scholar 

  • 35.

    Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modelling. R package version 3.1–64 (2014). http://CRAN.R-project.org/package=biomod2.

  • 36.

    McCullagh, P. & Nelder, J. A. Generalized Linear Models 511 (Chapman and Hall, 1989).

    MATH 

    Google Scholar 

  • 37.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 38.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An opensource release of Maxent. Ecography 40, 887–893 (2017).

    Google Scholar 

  • 39.

    QGIS Development Team (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.

  • 40.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).

    Google Scholar 

  • 41.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 42.

    Weiss, S. & Ferrand, N. Phylogeography of Southern European Refugia Evolutionary Perspectives on the Origins and Conservation of European Biodiversity 377 (Springer, 2007).

    Google Scholar 

  • 43.

    Martinetto, E. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobot. 41(2), 299–319 (2001).

    Google Scholar 

  • 44.

    Martinetto, E. et al. Late persistence and deterministic extinction of “humid thermophilous plant taxa of East Asian affinity”(HUTEA) in southern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 467, 211–231 (2017).

    Google Scholar 

  • 45.

    Villa, A. & Delfino, M. Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: An overview. Swiss J. Palaeontol. 138, 177–211 (2019).

    Google Scholar 

  • 46.

    Montuire, S., Maridet, O. & Legendre, S. Late Miocene–early Pliocene temperature estimates in Europe using rodents. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238(1–4), 247–262 (2006).

    Google Scholar 

  • 47.

    Velitzelos, D., Bouchal, J. M. & Denk, T. Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palyno. 204, 56–117 (2014).

    Google Scholar 

  • 48.

    Martinetto, E. & Vieira, M. New Pliocene records of plant fossil-taxa from NW Portugal and their relevance for the assessment of diversity loss patterns in the late Cenozoic of Europe. Rev. Palaeobot. Palyno. 104286 (2020).

  • 49.

    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Jylhä, K. et al. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim. Soc. 2(2), 148–167 (2010).

    Google Scholar 

  • 51.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109(1–2), 213 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Rutledge, D. Estimating long-term world coal production with logit and probit transforms. Int. J. Coal Geol. 85(1), 23–33 (2011).

    CAS 

    Google Scholar 

  • 53.

    Hausfather, Z. & Peters, G. Emissions: The “business as usual” story is misleading. Nature 577(7792), 618–620 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Delfino, M. Letters to the Editor: The past and future of extant amphibians. Science 308, 49–50 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Fauna d’Italia, Vol. XLII, Amphibia. Calderini, Bologna, XI + 537 pp (2007).

  • 56.

    Martínez-Monzón, A., Cuenca-Bescós, G., Bisbal-Chinesta, J.-F. & Blain, H.-A. One million years of diversity shifts in amphibians and reptiles in a Mediterranean landscape: Resilience rules the Quaternary. Palaeontology https://doi.org/10.1111/pala.12547 (2021).

    Article 

    Google Scholar 

  • 57.

    Basile, M. et al. Seasonality and microhabitat selection in a forest-dwelling salamander. Sci. Nat. 104(9–10), 80 (2017).

    Google Scholar 

  • 58.

    Macaluso, L. et al. Osteology of the Italian endemic spectacled salamanders, Salamandrina spp. (Amphibia, Urodela, Salamandridae): Selected skeletal elements for palaeontological investigations. J. Morph. 281(11), 1391–1410 (2020).

    PubMed 

    Google Scholar 

  • 59.

    Sanchiz, B. On the presence of zogosphene-zigantrum vertebral articulations in salamandrids. Acta Zool. Cracov. 31(6), 493–504 (1988).

    Google Scholar 

  • 60.

    Utzeri, C., Antonelli, D. & Angelini, C. Note on the behavior of the Spectacled Salamander Salamandrina terdigitata (Lacépede, 1788). Herpetozoa 18, 182–185 (2005).

    Google Scholar 

  • 61.

    Weitzman, M. L. The Noah’s Ark Problem. Econometrica 66, 1279–1298 (1998).

    MathSciNet 
    MATH 

    Google Scholar 

  • 62.

    Erwin, D. H. Extinction as the loss of evolutionary history. PNAS 105(1), 11520–11527 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. PNAS 114, 7641–7646 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel

    MIT makes strides on climate action plan