Marden, J. H. & Waddington, K. D. Floral choices by honeybees in relation to the relative distances to flowers. Physiol. Entomol. 6, 431–435 (1981).
Google Scholar
Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29, 779–784 (1981).
Google Scholar
Bauer, A. A., Clayton, M. K. & Brunet, J. Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. Am. J. Bot. 104, 772–781 (2017).
Google Scholar
Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176–178 (2003).
Google Scholar
Klahre, U. et al. Pollinator choice in petunia depends on two major genetic loci for floral scent production. Curr. Biol. 21, 730–739 (2011).
Google Scholar
Muth, F., Papaj, D. R. & Leonard, A. S. Bees remember flowers for more than one reason: pollen mediates associative learning. Anim. Behav. 111, 93–100 (2016).
Google Scholar
Brunet, J., Thairu, M. W., Henss, J. M., Link, R. I. & Kluever, J. A. The effects of flower, floral display, and reward sizes on bumblebee foraging behavior when pollen is the reward and plants are dichogamous. Int. J. Plant Sci. 176, 811–819 (2015).
Google Scholar
Nicholls, E. & De Ibarra, N. H. Bees associate colour cues with differences in pollen rewards. J. Exp. Biol. 217, 2783–2788 (2014).
Google Scholar
Thairu, M. W. & Brunet, J. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea. Ann. Bot. 115, 971–979 (2015).
Google Scholar
Ishii, H. S. Floral display size influences subsequent plant choice by bumble bees. Funct. Ecol. 20, 233–238 (2006).
Google Scholar
Mitchell, R. J., Karron, J. D., Holmquist, K. G. & Bell, J. M. The influence of Mimulus ringens floral display size on pollinator visitation patterns. Funct. Ecol. 18, 116–124 (2004).
Google Scholar
Makino, T. T. & Sakai, S. Experience changes pollinator responses to floral display size: from size-based to reward-based foraging. Funct. Ecol. 21, 854–863 (2007).
Google Scholar
Osborne, J. L. et al. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519–533 (1999).
Google Scholar
Osborne, J. L. & Williams, I. H. Site constancy of bumble bees in an experimentally patchy habitat. Agric. Ecosyst. Environ. 83, 129–141 (2001).
Google Scholar
Saville, N. M., Dramstad, W. E., Fry, G. L. A. & Corbet, S. A. Bumblebee movement in a fragmented agricultural landscape. Agric. Ecosyst. Environ. 61, 145–154 (1997).
Google Scholar
Ogilvie, J. E. & Thomson, J. D. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species. Ecology 97, 1442–1451 (2016).
Google Scholar
Cresswell, J. E. & Osborne, J. L. The effect of patch size and separation on bumblebbe foraging in oilseed rape: implications for gene flow. J. Appl. Ecol. 41, 539–546 (2004).
Google Scholar
Ohashi, K. & Thomson, J. D. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. Ann. Bot. 103, 1365–1378 (2009).
Google Scholar
Saleh, N. & Chittka, L. Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia 151, 719–730 (2007).
Google Scholar
Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M. & Chittka, L. Continuous radar tracking illustrates the development of multi-destination routes of bumblebees. Sci. Rep. 7, 1–15 (2017).
Google Scholar
Lihoreau, M., Chittka, L. & Raine, N. E. Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees. Funct. Ecol. 25, 1284–1292 (2011).
Google Scholar
Lihoreau, M., Chittka, L. & Raine, N. E. Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. Am. Nat. 176, 744–757 (2010).
Google Scholar
Lihoreau, M., Chittka, L., Le Comber, S. C. & Raine, N. E. Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biol. Lett. 8, 13–16 (2012).
Google Scholar
Minahan, D. F. & Brunet, J. Strong interspecific differences in foraging activity observed between honey bees and bumble bees using miniaturized radio frequency identification (RFID). Front. Ecol. Evol. 6, 156 (2018).
Google Scholar
Brunet, J., Zhao, Y. & Clayton, M. K. Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS ONE 14, e0212561 (2019).
Google Scholar
Reynolds, A. M., Lihoreau, M. & Chittka, L. A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements. PLoS Comput. Biol. 9, e1002938 (2013).
Google Scholar
Marschall, E. A., Chesson, P. L. & Stein, R. A. Foraging in a patchy environment: prey-encounter rate and residence time distributions. Anim. Behav. 37, 444–454 (1989).
Google Scholar
Pyke, G. H. Optimal foraging theory : a critical review. Ann. Rev. Ecol. Syst. 15, 523–575 (1984).
Google Scholar
Rands, S. A. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology. PeerJ 2, e269 (2014).
Google Scholar
Lima, S. L. & Zollner, P. A. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).
Google Scholar
Brunet, J. A conceptual framework that links pollinator foraging behavior to gene flow. In Proceedings for the 2018 Winter Seed Conference 63–67 (2018).
Macarthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).
Google Scholar
Pyke, G. H. Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol. Evol. 6, 1–16 (2015).
Google Scholar
Heinrich, B. ‘Majoring’ and ‘minoring’ by foraging bumblebees, Bombus vagans: an experimental analysis. Ecology 60, 245–255 (1979).
Google Scholar
Somme, L. et al. Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46, 92–106 (2015).
Google Scholar
Levey, D. J., Bolker, B. M., Tewksbury, J. J., Sargent, S. & Haddad, N. M. Effects of landscape corridors on seed dispersal by birds. Science 309, 146–148 (2005).
Google Scholar
Levey, D. J., Tewksbury, J. J. & Bolker, B. M. Modelling long-distance seed dispersal in heterogeneous landscapes. J. Ecol. 96, 599–608 (2008).
Google Scholar
Pasquet, R. S. et al. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. U. S. A. 105, 13456–13461 (2008).
Google Scholar
Smith, K. & Spangenberg, G. Considerations for managing agricultural co-existence between transgenic and non-transgenic cultivars of outcrossing perennial forage plants in dairy pastures. Agronomy 6, 59–68 (2016).
Google Scholar
Ellstrand, N. C. et al. Introgression of crop alleles into wild or weedy populations. Annu. Rev. Ecol. Evol. Syst. 44, 325–345 (2013).
Google Scholar
Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 124, 4154–4161 (2014).
Google Scholar
Esch, H. E. & Burns, J. E. Distance estimation by foraging honeybees. J. Exp. Biol. 199, 155–162 (1996).
Google Scholar
Srinivasan, M. V., Zhang, S., Altwein, M. & Tautz, J. Honeybee navigation: nature and calibration of the ‘odometer’. Science (80-.) 287, 851–853 (2000).
Google Scholar
Collett, M. & Collett, T. S. How do insects use path integration for their navigation?. Biol. Cybern. 83, 245–259 (2000).
Google Scholar
Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23, R789–R800 (2013).
Google Scholar
Chittka, L., Geiger, K. & Kunze, J. The influences of landmarks on distance estimation of honey bees. Anim. Behav. 50, 23–31 (1995).
Google Scholar
Srinivasan, M. V., Lehrer, M. & Horridge, G. A. Visual figure-ground discrimination in the honeybee: the role of motion parallax at boundaries. Proc. R. Soc. B Biol. Sci. 238, 331–350 (1990).
Google Scholar
Lehrer, M. Looking all around: honeybees use different cues in different eye regions. J. Exp. Biol. 201, 3275–3292 (1998).
Google Scholar
Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2, 185–209 (1999).
Google Scholar
Ohashi, K., Thomson, J. D. & D’Souza, D. Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition. Behav. Ecol. 18, 1–11 (2007).
Google Scholar
Comba, L. Patch use by bumblebees (hymenoptera apidae): temperature, wind, flower density and traplining. Ethol. Ecol. Evol. 11, 243–264 (1999).
Google Scholar
Ohashi, K., Leslie, A. & Thomson, J. D. Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behav. Ecol. 19, 936–948 (2008).
Google Scholar
Klein, S., Pasquaretta, C., Barron, A. B., Devaud, J. M. & Lihoreau, M. Inter-individual variability in the foraging behaviour of traplining bumblebees. Sci. Rep. 7, 1–12 (2017).
Google Scholar
Chittka, L. Bee cognition. Curr. Biol. 27, R1049–R1053 (2017).
Google Scholar
Ohashi, K. & Yahara, T. Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution. Funct. Ecol. 16, 492–503 (2002).
Google Scholar
Brunet, J. & Stewart, C. M. Impact of bee species and plant density on alfalfa pollination and potential for gene flow. Psyche A J. Entomol. https://doi.org/10.1155/2010/201858 (2010).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Weisberg, S. Applied Linear Regression (Wiley, 2013). https://doi.org/10.2307/3150981.
Google Scholar
Source: Ecology - nature.com