Kaneda, T. PRB’s 2016 World Population Data Sheet. http://www.prb.org/Publications/Datasheets/2016/2016-world-population-data-sheet.aspx (2016).
Bedford, J. et al. A new twenty-first century science for effective epidemic response. Nature 575(7781), 130–136 (2019).
Google Scholar
Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5(1), 27060 (2015).
Google Scholar
Dye, C. Health and urban living. Science 319(5864), 766–769 (2008).
Google Scholar
Fang, C. & Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 162, 126–136 (2017).
Google Scholar
Lee, V. J. et al. Epidemic preparedness in urban settings: New challenges and opportunities. Lancet. Infect. Dis 20(5), 527–529 (2020).
Google Scholar
Mollalo, A., Vahedi, B. & Rivera, K. M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Tot. Environ. 728, 138884 (2020).
Google Scholar
Small, C., MacDonald, A. J., & Sousa, D. Spatial network connectivity of population and development in the USA; Implications for disease transmission. Preprint at https://arxiv.org/abs/2004.14237v1 (2020).
Wang, Z. et al. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS day/night band data. Remote Sens. Environ. 263, 112557 (2021).
Google Scholar
Liu, Q. et al. Spatiotemporal patterns of COVID-19 impact on human activities and environment in Mainland China using nighttime light and air quality data. Remote Sens. 12(10), 1576 (2020).
Google Scholar
Elvidge, C., Ghosh, T., Hsu, F.-C., Zhizhin, M. & Bazilian, M. The Dimming of lights in China during the COVID-19 pandemic. Remote Sens. 12(17), 2851 (2020).
Google Scholar
Venter, Z.S., Barton, D.N., Gundersen, V., Figari, H., & Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Preprint at https://doi.org/10.31235/osf.io/kbdum (2020).
Chauhan, A. & Singh, R. P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 187, 109634 (2020).
Google Scholar
Kasturi, D. K., Kamarul Zaman, N. A. F., Kaskaoutis, D. G. & Latif, M. T. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Tot. Environ. 736, 139658 (2020).
Google Scholar
Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions. (Cambridge University Press, 1995)
Turner, M. G., Gardner, R. H. & O’Neill, R. V. Landscape Ecology in Theory and Practice (Springer, 2001).
Wiens, J. A., Schooley, R. L. & Weeks, R. D. Patchy landscapes and animal movements: Do beetles percolate?. Oikos 78(2), 257–264 (1997).
Google Scholar
Dolman, P. M., Hinsley, S. A., Bellamy, P. E. & Watts, K. Woodland birds in patchy landscapes: the evidence base for strategic networks. Ibis 149, 146–160 (2007).
Google Scholar
Laiolo, P. & Tella, J. L. Landscape bioacoustics allow detection of the effects of habitat patchiness on population structure. Ecology 87(5), 1203–1214 (2006).
Google Scholar
Jia, Y., Tang, L., Xu, M. & Yang, X. Landscape pattern indices for evaluating urban spatial morphology—A case study of Chinese cities. Ecol. Ind. 99, 27–37 (2019).
Google Scholar
Bosch, M. & Chenal, J. Spatiotemporal patterns of urbanization in three Swiss urban agglomerations: Insights from landscape metrics, growth modes and fractal analysis. Preprint https://doi.org/10.1101/645549 (2019).
Google Scholar
Wang, H., Huang, Y., Wang, D. & Chen, H. Effects of urban built-up patches on native plants in subtropical landscapes with ecological thresholds—A case study of Chongqing city. Ecol. Indic. 108, 105751 (2020).
Google Scholar
McGarigal, K., & Cushman, S.A. The gradient concept of landscape structure. in Issues and Perspectives in Landscape Ecology (eds. Wiens, J., & Moss, M.) 112–119 (Cambridge University Press, 2005).
Cushman, S. A., Gutzweiler, K., Evans, J., McGarigal, K. The gradient paradigm: a conceptual and analytical framework for landscape ecology. in Spatial Complexity, Informatics, and Wildlife Conservation (eds. Cushman, S. A. & Huettmann, F.) 83–108. (Springer, 2010).
McGarigal, K., Tagil, S. & Cushman, S. A. Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landsc. Ecol. 24(3), 433–450 (2009).
Google Scholar
Fan, C., Myint, S. W., Rey, S. J. & Li, W. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: Evidence from the Phoenix metropolitan region. Int. J. Appl. Earth Obs. Geoinf. 58, 12–25 (2017).
Google Scholar
Kowe, P., Mutanga, O., Odindi, J. & Dube, T. A quantitative framework for analysing long term spatial clustering and vegetation fragmentation in an urban landscape using multi-temporal landsat data. Int. J. Appl. Earth Obs. Geoinf. 88, 102057 (2020).
Google Scholar
Wang, J., Kuffer, M. & Pfeffer, K. The role of spatial heterogeneity in detecting urban slums. Comput. Environ. Urban Syst. 73, 95–107 (2019).
Google Scholar
Wu, D. Q. et al. Multi-scale identification of urban landscape structure based on two-dimensional wavelet analysis: The case of metropolitan Beijing, China. Ecol. Complex. 43, 100832 (2020).
Google Scholar
Rocchini, D. et al. Fourier transforms for detecting multitemporal landscape fragmentation by remote sensing. Int. J. Remote Sens. 34(24), 8907–8916 (2013).
Google Scholar
QGIS Development Team. QGIS Version 3.16.10. Geographic Information System. Open-Source Geospatial Foundation Project. https://www.qgis.org/en/site/ (2019).
Bennett, M. M. & Smith, L. C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 192, 176–197 (2017).
Google Scholar
Zhuo, L. et al. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 30(4), 1003–1018 (2009).
Google Scholar
Zhang, Q. & Seto, K. C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 115(9), 2320–2329 (2011).
Google Scholar
Yang, B. et al. A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery. Int. J. Geogr. Inf. Sci. 34(9), 1740–1764 (2020).
Google Scholar
Chen, X. Nighttime lights and population migration: Revisiting classic demographic perspectives with an analysis of recent European data. Remote Sens. 12(1), 169 (2020).
Google Scholar
Li, X., Li, D., Xu, H. & Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 38(21), 5934–5951 (2017).
Google Scholar
Duan, X., Hu, Q., Zhao, P., Wang, S. & Ai, M. An approach of identifying and extracting urban commercial areas using the nighttime lights satellite imagery. Remote Sens. 12(6), 1029 (2020).
Google Scholar
Krikigianni, E., Tsiakos, C. & Chalkias, C. Estimating the relationship between touristic activities and night light emissions. Eur. J. Remote Sens. 52(sup1), 233–246 (2019).
Google Scholar
Israeli Ministry of Health. Online Geodatabase on COVID-19 Exposures (In Hebrew). https://imoh.maps.arcgis.com/apps/webappviewer/index.html?id=20ded58639ff4d47a2e2e36af464c36e&locale=he&/
Sharav, N. et al. Gush Dan Metro. The Economic, Social and Urban Impacts of the Gush Dan Metro Network Executive Report. Ministry of Finance, Ministry of Transport and Road Safety, National Economic Council Prime Minister’s Office, NATA, Ayalon Highways, July 2020. (in Hebrew). https://www.gov.il/BlobFolder/reports/metro_goshdan_jul_2020/he/Metro_Executive_Summary_14_july_2020.pdf
MathWorks 2019. MATLAB ver. 2019b Computer Program. https://www.mathworks.com/. (The MathWorks Inc., 2019).
Moellering, H. & Tobler, W. Geographical variances. Geogr. Anal. 4(1), 34–50 (1972).
Google Scholar
Wu, J., Jelinski, D., Luck, M. & Tueller, P. T. Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Ann. GIS 6(1), 6–19 (2000).
Google Scholar
Shen, W., Darrel Jenerette, G., Wu, J. & Gardner, R. H. Evaluating empirical scaling relations of pattern metrics with simulated landscapes. Ecography 27(4), 459–469 (2004).
Google Scholar
Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 19(2), 125–138 (2004).
Google Scholar
Mahadevan, A. & Campbell, J. W. Biogeochemical patchiness at the sea surface. Geophys. Res. Lett. 29(19), 32-1-32–4 (2002).
Google Scholar
Yamamoto, D. Scales of regional income disparities in the USA, 1955 2003. J. Econ. Geogr. 8(1), 79–103 (2007).
Google Scholar
USGS Earth Explorer. https://earthexplorer.usgs.gov.
Román, M. O. et al. NASA’s black marble nighttime lights product suite. Remote Sens. Environ. 210, 113–143 (2018).
Google Scholar
Google Earth Engine Data Catalog, Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines. https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG.
Source: Ecology - nature.com