in

Performance and host association of spotted lanternfly (Lycorma delicatula) among common woody ornamentals

  • 1.

    Barringer, L. E., Donovall, L. R., Spichiger, S. E., Lynch, D. & Henry, D. The first New World record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. News 125, 20–23 (2015).

    Article 

    Google Scholar 

  • 2.

    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (Hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 6, 20 (2015).

    Article 

    Google Scholar 

  • 3.

    Jung, J. M., Jung, S., Byeon, D. & Lee, W. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10, 532–538 (2017).

    Article 

    Google Scholar 

  • 4.

    Lee, D.-H., Park, Y.-L. & Leskey, T. C. A review of biology and management of Lycorma delicatula (Hemiptera: Fulgoridae), an emerging global invasive species. J. Asia-Pac. Entomol. 22, 589–596 (2019).

    Article 

    Google Scholar 

  • 5.

    (NYSIPM) New York State Integrated Pest Management. 2020. Spotted lanternfly. https://nysipm.cornell.edu/environment/invasive-species-exotic-pests/spotted-lanternfly/. Accessed 18 January 2021.

  • 6.

    Park, M., Kim, S. M. & Lee, J. H. Genetic structure of Lycorma delicatula (Hemiptera: Fulgoridae) populations in Korea: implication for invasion processes in heterogeneous landscapes. Bull. Entomol. Res. 103, 414–424 (2013).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Keller, J. A. et al. Dispersal of Lycorma delicatula (Hemiptera: Fulgoridae) nymphs through contiguous, deciduous forest. Environ. Entomol. 49, 1012–1018 (2020).

    Article 

    Google Scholar 

  • 8.

    Smyers, E. C. et al. Spatio-temporal model for predicting spring hatch of the spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 50, 126–137 (2020).

    Article 

    Google Scholar 

  • 9.

    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2019).

    Google Scholar 

  • 10.

    Urban, J. M. Perspective: shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Harper, J. K., Stone, W., Kelsey, T. W. & Kime, L. F. Potential Economic Impact of the Spotted Lanternfly on Agriculture and Forestry in Pennsylvania (The Center for Rural Pennsylvania, 2019).

    Google Scholar 

  • 12.

    Song, M. K. Damage by Lycorma delicatula and chemical control in vineyards. M.S. thesis. Chunbuk National University, Korea (2010).

  • 13.

    Tedders, W. L. & Smith, J. S. Shading effect on pecan by sooty mold growth. J. Econ. Entomol. 69, 551–553 (1976).

    Article 

    Google Scholar 

  • 14.

    Lemos-Filho, J. P. D. & Paiva, É. A. S. The effects of sooty mold on photosynthesis and mesophyll structure of mahogany (Swietenia macrophylla King., Meliaceae). Bragantia 65, 11–17 (2006).

    Article 

    Google Scholar 

  • 15.

    Han, J. M. et al. Lycorma delicatula (Hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea. Entomol. Res. 38, 281–286 (2008).

    Article 

    Google Scholar 

  • 16.

    Park, J. D. et al. Biological characteristics of Lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48, 53–57 (2009).

    Article 

    Google Scholar 

  • 17.

    Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (Hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).

    Article 

    Google Scholar 

  • 18.

    Barringer, L. E. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).

    Article 

    Google Scholar 

  • 19.

    Uyi, O. et al. Spotted lanternfly (Hemiptera: Fulgoridae) can complete development and reproduce without access to the preferred host, Ailanthus altissima. Environ. Entomol. 49, 1185–1190 (2020).

    Article 

    Google Scholar 

  • 20.

    Murman, K. Distribution, survival, and development of spotted lanternfly on host plants found in north America. Environ. Entomol. 49, 1270–1281 (2020).

    Article 

    Google Scholar 

  • 21.

    Magnusson, A. glmmTMB: Generalized linear mixed models using template model builder. R package v. 0.1.3. https://github.com/glmmTMB (2017).

  • 22.

    R Development Core Team. R: A Language and Environment for Statistical Computing Computer Program, Version 3.6.3 (R Development Core Team, 2020).

    Google Scholar 

  • 23.

    Kariyat, R. R. & Portman, S. L. Plant–herbivore interactions: Thinking beyond larval growth and mortality. Am. J. Bot. 103, 1–3 (2016).

    Article 

    Google Scholar 

  • 24.

    Fordyce, J. A. & Shapiro, A. M. Another perspective on the slow-growth/high-mortality hypothesis: chilling effects on swallowtail larvae. Ecology 84, 263–268 (2003).

    Article 

    Google Scholar 

  • 25.

    Uesugi, A. The slow-growth high-mortality hypothesis: direct experimental support in a leaf mining fly. Ecol. Entomol. 40, 221–228 (2015).

    Article 

    Google Scholar 

  • 26.

    Song, S., Kim, S., Kwon, S. W., Lee, S.-I. & Jablonski, P. G. Defense sequestration associated with narrowing of diet and ontogenetic change to aposematic colours in the spotted lanternfly. Sci. Rep. 8, 16831 (2018).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Domingue, M. J. & Baker, T. C. Orientation of flight for physically disturbed spotted lanternflies, Lycorma delicatula, (Hemiptera, Fulgoridae). J. Asia Pac. Entomol. 22, 117–120 (2019).

    Article 

    Google Scholar 

  • 28.

    Lee, J. E. et al. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean J. Appl. Entomol. 48, 467–477 (2009).

    Article 

    Google Scholar 

  • 29.

    Liu, H. Seasonal development, cumulative growing degree-days, and population density of spotted lanternfly (Hemiptera: Fulgoridae) on selected hosts and substrates. Environ. Entomol. 49, 1171–1184 (2020).

    Article 

    Google Scholar 

  • 30.

    Jaenike, J. On optimal oviposition behavior in phytophagous insects. Theor. Popul. Biol. 14, 350–356 (1978).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Gripenberg, S., Mayhew, P. J., Parnell, M. & Roslin, T. A meta-analysis of preference–performance relationships in phytophagous insects. Ecol. Lett. 13, 383–393 (2010).

    Article 

    Google Scholar 

  • 32.

    Fujiyama, N., Torii, C., Akabane, M. & Katakura, H. Oviposition site selection by herbivorous beetles: a comparison of two thistle feeders: Cassida rubiginosa and Henosepilachnniponica. Entomol. Exp. Appl. 128, 41–48 (2008).

    Article 

    Google Scholar 

  • 33.

    Wolfin, M. S., Myrick, A. J. & Baker, T. C. Flight duration capabilities of dispersing adult spotted lanternflies, Lycorma delicatula. J. Insect Behav. 33, 125–137 (2020).

    Article 

    Google Scholar 

  • 34.

    Faraji, F., Janssen, A. & Sabelis, M. W. Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecol. Entomol. 27, 660–664 (2002).

    Article 

    Google Scholar 

  • 35.

    Behmer, S. T. & Joern, A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. USA 105, 1977–1982 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Behmer, S. T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187 (2009).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cleaning up industrial filtration

    Using graphene foam to filter toxins from drinking water