in

Persistence of plant-mediated microbial soil legacy effects in soil and inside roots

  • 1.

    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. Hvander Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol 11, 789–799 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev. Plant Biol. 57, 233–266 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    De Long, J. R., Fry, E. L., Veen, G. F. & Kardol, P. Why are plant–soil feedbacks so unpredictable, and what to do about it? Funct. Ecol. 33, 118–128 (2019).

    Article 

    Google Scholar 

  • 5.

    Meisner, A., De Deyn, G. B., de Boer, W. & van der Putten, W. H. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc. Natl. Acad. Sci. USA. 110, 9835–9838 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, T. M. Legacy effects of aboveground-belowground interactions. Ecol. Lett. 15, 813–821 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Heinen, R. et al. Plant community composition steers grassland vegetation via soil legacy effects. Ecol. Lett. 23, 973–982 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Semchenko, M. et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91–96 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).

    Article 

    Google Scholar 

  • 12.

    Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen-connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Cortois, R., Schröder‐Georgi, T., Weigelt, A., van der Putten, W. H. & De Deyn, G. B. Plant–soil feedbacks: role of plant functional group and plant traits. J. Ecol. 104, 1608–1617 (2016).

    Article 

    Google Scholar 

  • 15.

    Bezemer, T. M., Jing, J., Bakx‐Schotman, J. M. T. & Bijleveld, E.-J. Plant competition alters the temporal dynamics of plant-soil feedbacks. J. Ecol. 106, 2287–2300 (2018).

    Article 

    Google Scholar 

  • 16.

    Kardol, P., Deyn, G. B. D., Laliberté, E., Mariotte, P. & Hawkes, C. V. Biotic plant–soil feedbacks across temporal scales. J. Ecol. 101, 309–315 (2013).

    Article 

    Google Scholar 

  • 17.

    Dudenhöffer, J.-H., Ebeling, A., Klein, A.-M. & Wagg, C. Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. J. Ecol. 106, 230–241 (2018).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Elger, A., Lemoine, D. G., Fenner, M. & Hanley, M. E. Plant ontogeny and chemical defence: older seedlings are better defended. Oikos. 118, 767–773 (2009).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Rosenblueth, M. & Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19, 827–837 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Lundberg, D. S. et al. Defining core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Gaiero, J. R. et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100, 1738–1750 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Rodriguez, R. J. Jr, Arnold, J. F. W. & Redman, A. E. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Fitzpatrick, C. R. et al. Ecological role of the angiosperm root microbiome. Proc. Natl. Acad. Sci. USA. 115, E1157–E1165 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Hardoim, P. R., van Overbeek, L. S. & Elsas, J. Dvan Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16, 463–471 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Sikes, B. A., Hawkes, C. V. & Fukami, T. Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology 97, 484–493 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Bezemer, T. M. et al. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J. Ecol. 94, 893–904 (2006).

    CAS 
    Article 

    Google Scholar 

  • 32.

    van de Voorde, T. F., van der Putten, W. H. &  Bezemer, T. M. Intra‐and interspecific plant–soil interactions, soil legacies and priority effects during old‐field succession. J. Ecol. 99, 945–953 (2011).

    Article 

    Google Scholar 

  • 33.

    Hannula, S. E. et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. mBio 10, e02635–19 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Ampt, E. A., van Ruijven, J., Raaijmakers, J. M., Termorshuizen, A. J. & Mommer, L. Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. Eur. J. Plant Pathol. 154, 141–156 (2019).

    Article 

    Google Scholar 

  • 36.

    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA. 105, 11512–11519 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Rousk, J. & Bååth, E. Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biol. Biochem. 39, 2173–2177 (2007).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Phillips, M. L. et al. Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecol. 40, 107–117 (2019).

    Article 

    Google Scholar 

  • 39.

    Carini, P., Marsden, P. & Leff, J. E. A. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Hannula, S. E., Morrien, E., van der Putter, W. H. & de Boer, W. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecol. 48, 100988 (2020).

    Article 

    Google Scholar 

  • 41.

    Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta‐analytical review. Ecol. Lett. 11, 980–992 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Hannula, S. E. et al. Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soil‐borne pathogen. Environ. Microbiol. 22, 660–676 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Francioli, D. et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil https://doi.org/10.1007/s11104-020-04454-y (2020).

  • 45.

    Craine, J., Froehle, J., Tilman, D., Wedin, D. & Chapin, F. S. III The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285 (2001).

    Article 

    Google Scholar 

  • 46.

    Tjoelker, M., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Herz, K. et al. Linking root exudates to functional plant traits. PLoS ONE 13, e0204128 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Huberty, M., Choi, Y. H., Heinen, R. & Bezemer, T. M. Above-ground plant metabolomic responses to plant–soil feedbacks and herbivory. J. Ecol. 108, 1703–1712 (2020).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA. 112, E911–E920 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Hannula, S. E. et al. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J. 11, 2294–2304 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Koyama, A., Maherali, H. & Antunes, P. M. Plant geographic origin and phylogeny as potential drivers of community structure in root‐inhabiting fungi. J. Ecol. 107, 1720–1736 (2019).

    Article 

    Google Scholar 

  • 53.

    Wemheuer, F., Wemheuer, B., Daniel, R. & Vidal, S. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci. Rep. 9, 1–14 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Ma, H. et al. Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl. Soil Ecol. 150, 103468 (2020).

    Article 

    Google Scholar 

  • 55.

    Suárez-Moreno, Z. R. et al. Plant-growth promotion and biocontrol properties of three streptomyces spp. isolates to control bacterial rice pathogens. Front. Microbiol. 10, 290 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Liang, M. et al. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology 96, 562–574 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 58.

    Teste, F. P., Veneklaas, E. J., Dixon, K. W. & Lambers, H. Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct. Ecol. 28, 819–828 (2014).

    Article 

    Google Scholar 

  • 59.

    Mommer, L. et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 218, 542–553 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    De Long, J. R. et al. How plant–soil feedbacks influence the next generation of plants?. Ecol. Res. 36, 32–44 https://doi.org/10.1111/1440-1703.12165 (2021).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).

    Article 

    Google Scholar 

  • 63.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Micro. Ecol. 75, 129–137 (2015).

    Article 

    Google Scholar 

  • 66.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Gweon, H. S. et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • 70.

    Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 10, 1200–1202 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Oksanen, J. et al. Vegan: Ordination Methods, Diversity Analysis And Other Functions For Community And Vegetation Ecologists (Community Ecol Package Vegan, 2013).

  • 73.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Macroecological distributions of gene variants highlight the functional organization of soil microbial systems

    Making roadway spending more sustainable