Muok AR, Briegel A. Intermicrobial hitchhiking: how nonmotile microbes leverage communal motility. Trends Microbiol. 2021;29:542–50.
Google Scholar
Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.
Google Scholar
Simon A, Bindschedler S, Job D, Wick LY, Filippidou S, Kooli WM, et al. Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium. FEMS Microbiol Ecol. 2015;91:fiv116.
Google Scholar
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.
Google Scholar
Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9:177.
Google Scholar
Otten W, Hall D, Harris K, Ritz K, Young IM, Gilligan CA. Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. N. Phytol. 2001;151:459–68.
Sun B, Chen X, Zhang X, Liang A, Whalen JK, McLaughlin NB. Greater fungal and bacterial biomass in soil large macropores under no-tillage than mouldboard ploughing. Eur J Soil Biol. 2020;97:103155.
Google Scholar
Otto S, Bruni EP, Harms H, Wick LY. Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME J. 2017;11:386–93.
Google Scholar
Kjeldgaard B, Listian SA, Ramaswamhi V, Richter A, Kiesewalter HT, Kovács ÁT. Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm. 2019;1:100007.
Google Scholar
Narr A, Nawaz A, Wick LY, Harms H, Chatzinotas A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front Microbiol. 2017;8:1975.
Google Scholar
Rosner A, Gutstein R. Adsorption of actinophage Pal 6 to developing mycelium of Streptomyces albus. Can J Microbiol. 1981;27:254–7.
Google Scholar
Ghanem N, E. Stanley C, Harms H, Chatzinotas A,Y, Wick L. Mycelial effects on phage retention during transport in a microfluidic platform. Environ Sci Technol. 2019;53:11755–63.
Google Scholar
Dennehy JJ. What ecologists can tell virologists. Annu Rev Microbiol. 2014;68:117–35.
Google Scholar
Hurst CJ, Gerba CP, Cech I. Effects of environmental variables and soil characteristics on virus survival in soil. Appl Environ Microbiol. 1980;40:1067–79.
Google Scholar
Yeager JG, Brien RT. Enterovirus inactivation in soil. Appl Environ Microbiol. 1979;38:694–701.
Google Scholar
Schwartz DA, Lindell D. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME J. 2017;11:1836–51.
Google Scholar
Shan J, Ramachandran A, Thanki AM, Vukusic FBI, Barylski J, Clokie MRJ. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep. 2018;8:5091.
Google Scholar
Chaudhry W, Lee E, Worthy A, Weiss Z, Grabowicz M, Vega NM, et al. Mucoidy, a general mechanism for maintaining lytic phage in populations of bacteria. FEMS Microbiology Ecology. 2020;96:fiaa162.
Yu Z, Schwarz C, Zhu L, Chen L, Shen Y, Yu P. Hitchhiking behavior in bacteriophages facilitates phage infection and enhances carrier bacteria colonization. Environ Sci Technol. 2020;55:2462–72.
Google Scholar
Tarafder AK, von Kügelgen A, Mellul AJ, Schulze U, Aarts DGAL, Bharat TAM. Phage liquid crystalline droplets form occlusive sheaths that encapsulate and protect infectious rod-shaped bacteria. Proc Natl Acad Sci. 2020;117:4724–31.
Google Scholar
Callaway RM, Ridenour WM. Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ. 2004;2:436–43.
Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol. 2019;29:521–37.
Gama JA, Reis AM, Domingues I, Mendes-Soares H, Matos AM, Dionisio F. Temperate Bacterial viruses as double-edged swords in bacterial warfare. PLoS One. 2013;8:e59043.
Google Scholar
Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol. 2021;31:3479–89.
Google Scholar
Pyšek P, Bacher S, Kühn I, Novoa A, Catford JA, Hulme PE, et al. Macroecological framework for invasive aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota. 2020;62:407–61.
Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, et al. A proposed unified framework for biological invasions. Trends Ecol Evol. 2011;26:333–9.
Google Scholar
Richardson DM, Pyšek P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr Earth Environ. 2006;30:409–31.
Williamson M. Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions. 2006;8:1561–8.
Demerec M, Adelberg EA, Clark AJ, Hartman PE. A proposal for a uniform nomenclature in bacterial genetics. Genetics 1966;54:61–76.
Google Scholar
Dechesne A, Wang G, Gülez G, Or D, Smets BF. Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci. 2010;107:14369–72.
Google Scholar
Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defao G. Influence of enhanced antibiotic production in Pseudomanas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathol. 1992;82:190–5.
Google Scholar
Schamfuß S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol. 2013;47:6908–15.
Google Scholar
Bichet MC, Chin WH, Richards W, Lin Y-W, Avellaneda-Franco L, Hernandez CA, et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience. 2021;24:102287.
Google Scholar
Lu F, Wu S-H, Hung Y, Mou C-Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5:1408–13.
Google Scholar
Fortier L-C, Moineau S Phage production and maintenance of stocks, including expected stock Lifetimes. In: Clokie MRJ, Kropinski AM, editors. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Totowa: Humana Press; 2009. p. 203–19.
Mazzocco A, Waddell TE, Lingohr E, Johnson RP Enumeration of Bacteriophages Using the Small Drop Plaque Assay System In: Clokie MRJ, Kropinski AM, editors. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions Totowa: Humana Press; 2009. p. 81–85.
Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay In: Clokie MRJ, Kropinski AM, editors. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Totowa: Humana Press; 2009. p. 69–76.
Thanki AM, Taylor-Joyce G, Dowah A, Yakubu Nale J, Malik D, Rebecca Jane Clokie M. Unravelling the Links between Phage Adsorption and Successful Infection in Clostridium difficile. Viruses. 2018;10:441.
Nair RR, Fiegna F, Velicer GJ. Indirect evolution of social fitness inequalities and facultative social exploitation. Proc R Soc B Biol Sci. 2018;285:20180054.
Postma M, Goedhart J. PlotsOfData—A web app for visualizing data together with their summaries. PLOS Biol. 2019;17:e3000202.
Google Scholar
Wood M. Statistical inference using bootstrap confidence intervals. Significance. 2004;1:180–2.
Cumming G, Finch S. Inference by eye: confidence interval and how to read pictures of data. Am Psychol. 2005;60:170–80.
Google Scholar
Frada MJ, Schatz D, Farstey V, Ossolinski JE, Sabanay H, Ben-Dor S, et al. Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean. Curr Biol. 2014;24:2592–7.
Google Scholar
Frada MJ, Vardi A. Algal viruses hitchhiking on zooplankton across phytoplankton blooms. Commun Integr Biol. 2015;8:e1029210.
Google Scholar
Totsche KU, Kögel-Knabner I. Mobile organic sorbent affected contaminant transport in soil: numerical case studies for enhanced and reduced mobility. Vadose Zo J. 2004;3:352–67.
Google Scholar
Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018;12:1154–62.
Google Scholar
Lehmann K, Lehmann R, Totsche KU. Event-driven dynamics of the total mobile inventory in undisturbed soil account for significant fluxes of particulate organic carbon. Sci Total Environ. 2021;756:143774.
Google Scholar
Storms ZJ, Sauvageau D. Modeling tailed bacteriophage adsorption: insight into mechanisms. Virology. 2015;485:355–62.
Google Scholar
Shan Y, Harms H, Wick LY. Electric field effects on bacterial deposition and transport in porous media. Environ Sci Technol. 2018;52:14294–301.
Google Scholar
Junier P, Cailleau G, Palmieri I, Vallotton C, Trautschold OC, Junier T, et al. Democratization of fungal highway columns as a tool to investigate bacteria associated with soil fungi. FEMS Microbiol Ecol. 2021;97:fiab003.
Google Scholar
Furuno S, Remer R, Chatzinotas A, Harms H, Wick LY. Use of mycelia as paths for the isolation of contaminant-degrading bacteria from soil. Micro Biotechnol. 2012;5:142–8.
Google Scholar
Jiang F, Zhang L, Zhou J, George TS, Feng G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. N. Phytol. 2021;230:304–15.
Google Scholar
Jansa J, Hodge A. Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. N. Phytol. 2021;230:14–16.
Zhang Y, Kastman EK, Guasto JS, Wolfe BE. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat Commun. 2018;9:336.
Google Scholar
Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, Kuehn S. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J 2020;14:2007–18.
Google Scholar
Testa S, Berger S, Piccardi P, Oechslin F, Resch G, Mitri S. Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa. Commun Biol. 2019;2:405.
Google Scholar
May T, Tsuruta K, Okabe S. Exposure of conjugative plasmid carrying Escherichia coli biofilms to male-specific bacteriophages. ISME J. 2011;5:771–5.
Google Scholar
Abedon ST. Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol. 2017;3:186.
Google Scholar
Adams MH Bacteriophages (Interscience Publishers, Inc., New York – London, 1959)
Schrader HS, Schrader JO, Walker JJ, Bruggeman NB, Vanderloop JM, Shaffer JJ, et al. Effects of host starvation on bacteriophage dynamics. Bact Oligotrophic Environ Starvation-Survival Lifestyle. 1997; 368-85.
Schrader HS, Schrader JO, Walker JJ, Wolf TA, Nickerson KW, Kokjohn TA. Bacteriophage infection and multiplication occur in Pseudomonas aeruginosa starved for 5 years. Can J Microbiol. 1997;43:1157–63.
Google Scholar
Łoś M, Golec P, Łoś JM, Węglewska-Jurkiewicz A, Czyż A, Węgrzyn A, et al. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol. 2007;7:13.
Google Scholar
Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol. 2016;7:1391.
Google Scholar
Yin J. A quantifiable phenotype of viral propagation. Biochem Biophys Res Commun. 1991;174:1009–14.
Google Scholar
Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLOS Genet. 2021;17:e1009204.
Google Scholar
Berthold T, Centler F, Hübschmann T, Remer R, Thullner M, Harms H, et al. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Sci Rep. 2016;6:36390.
Google Scholar
Lee KL, Hubbard LC, Hern S, Yildiz I, Gratzl M, Steinmetz NF. Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomater Sci. 2013;1. https://doi.org/10.1039/C3BM00191A.
Hudson P, Greenman J. Competition mediated by parasites: biological and theoretical progress. Trends Ecol Evol. 1998;13:387–90.
Google Scholar
Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, et al. Ecological and evolutionary insights from species invasions. Trends Ecol Evol. 2007;22:465–71.
Google Scholar
Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun. 2020;70:3985–93.
Chantrey J, Dale TD, Read JM, White S, Whitfield F, Jones D, et al. European red squirrel population dynamics driven by squirrelpox at a gray squirrel invasion interface. Ecol Evol. 2014;4:3788–99.
Google Scholar
Essl F, Bacher S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, et al. Which taxa are alien? Criteria, applications, and uncertainties. Bioscience 2018;68:496–509.
Seebens H, Gastner MT, Blasius B. The risk of marine bioinvasion caused by global shipping. Ecol Lett. 2013;16:782–90.
Google Scholar
Seebens H, Essl F, Blasius B. The intermediate distance hypothesis of biological invasions. Ecol Lett. 2017;20:158–65.
Google Scholar
Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, et al. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol. 2008;45:403–14.
Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ. 2012;10:135–43.
Source: Ecology - nature.com