in

Phenology of Oithona similis demonstrates that ecological flexibility may be a winning trait in the warming Arctic

  • 1.

    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago–Svalbard, Norway. Glob. Change Biol. 23, 490–502 (2017).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Yletyinen, J. Arctic climate resilience. Nat. Clim. Change 9, 805–806 (2019).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Renaud, P. E. et al. Pelagic food-webs in a changing Arctic: A trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75, 1871–1881 (2018).

    Article 

    Google Scholar 

  • 4.

    Möller, E. F. & Nielsen, T. G. Borealization of Arctic zooplankton—smaller and less fat zooplankton species in Disko Bay, Western Greenland. Limnol. Oceanogr. 65, 1175–1188 (2020).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Dalpadado, P. et al. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Prog. Oceanogr. 185, 102320. https://doi.org/10.1016/j.pocean.2020.102320 (2020).

    Article 

    Google Scholar 

  • 6.

    Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home – Boreal ecosystem claims Atlantic sector of the Arctic. Sci. Total. Environ. 771, 144817. https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Bauerfeind, E., Nöthig, E. M., Pauls, B., Kraft, A. & Beszczynska-Möller, A. Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009. J. Mar. Syst. 132, 95–10 (2014).

    Article 

    Google Scholar 

  • 8.

    Weydmann, A. et al. Shift towards the dominance of boreal species in the Arctic: Inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 501, 41–52 (2014).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar. Biol. 39, 1785–1802 (2016).

    Article 

    Google Scholar 

  • 10.

    Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Nielsen, T. G. & Andersen, C. Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Mar. Biol. 141, 707–724 (2002).

    Article 

    Google Scholar 

  • 12.

    Lischka, S. & Hagen, W. Life histories of the copepods Pseudocalanus minutus, P. acuspes, (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 28, 910–921 (2005).

    Article 

    Google Scholar 

  • 13.

    Arendt, K. E., Nielsen, T. G., Rysgaard, S. & Tönnesson, K. Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar. Ecol. Prog. Ser. 401, 49–62 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Trudnowska, E., Stemmann, L., Błachowiak-Samołyk, K. & Kwasniewski, S. Taxonomic and size structures of zooplankton communities in the fjords along the Atlantic water passage to the Arctic. J. Mar. Sys. 204, 103306. https://doi.org/10.1016/j.jmarsys.2020.103306 (2020).

    Article 

    Google Scholar 

  • 15.

    Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. Large versus small zooplankton in relation to temperature in the Arctic shelf region. Polar. Res. 37, 1427409. https://doi.org/10.1080/17518369.2018.1427409 (2018).

    Article 

    Google Scholar 

  • 16.

    Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).

    Google Scholar 

  • 17.

    Turner, J. T. Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape Cod Bay. Hydrobiologia 292(293), 405–413 (1994).

    Article 

    Google Scholar 

  • 18.

    Castellani, C., Robinson, C., Smith, T. & Lampitt, R. S. Temperature affects respiration rate of Oithona similis. Mar. Ecol. Prog. Ser. 285, 129–135 (2005).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Turner, J. T., Levinsen, H., Nielsen, T. G. & Hansen, B. W. Zooplankton feeding ecology: Grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Mar. Ecol. Prog. Ser. 221, 209–219 (2001).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Boissonnot, L., Niehoff, B., Hagen, W., Søreide, J. E. & Graeve, M. Lipid turnover reflects life-cycle strategies of small-sized Arctic copepods. J. Plankton Res. 38, 1420–1432 (2016).

    CAS 

    Google Scholar 

  • 21.

    Błachowiak-Samołyk, K. et al. Winter Tales: The dark side of planktonic life. Polar Biol. 38, 23–36 (2015).

    Article 

    Google Scholar 

  • 22.

    Berge, J. et al. Zooplankton in the Polar Night in Polar Night Marine Ecology. In Advances in Polar Ecology Vol. 4 (eds Berge, J. et al.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-030-33208-2_5.

    Chapter 

    Google Scholar 

  • 23.

    Hobbs, L., Banas, N. S., Cottier, F. R., Berge, J. & Daase, M. Eat or sleep: Availability of winter prey explains mid-winter and early-spring activity in an Arctic Calanus population. Front. Mar. Sci. 7, 744. https://doi.org/10.3389/fmars.2020.541564 (2020).

    Article 

    Google Scholar 

  • 24.

    Svensen, C., Seuthe, L., Vasilyeva, Y., Pasternak, A. & Hansen, E. Zooplankton distribution across Fram Strait in autumn: Are small copepods and protozooplankton important?. Prog. Oceanog. 91, 534–544 (2011).

    Article 

    Google Scholar 

  • 25.

    Węsławski, J. M., Kwasniewski, S. & Wiktor, J. Winter in Svalbard fjord ecosystem. Arctic 44, 115–123 (1991).

    Article 

    Google Scholar 

  • 26.

    Lischka, S., Giménez, L., Hagen, W. & Ueberschär, B. Seasonal changes in digestive enzyme (trypsin) activity of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 30, 1331–1341 (2007).

    Article 

    Google Scholar 

  • 27.

    Lischka, S. & Hagen, W. Seasonal dynamics of mesozooplankton in the Arctic Kongsfjord (Svalbard) during year-round observations from August 1998 to July 1999. Polar Biol. 39, 1859–1878 (2016).

    Article 

    Google Scholar 

  • 28.

    Weydmann-Zwolicka, A. et al. Zooplankton and sediment flux in two contrasting fjords reveal Atlantification of the Arctic. Sci. Total. Environ. 773, 145599. https://doi.org/10.1016/j.scitotenv.2021.145599 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Zamora-Terol, S., Nielsen, T. G. & Saiz, E. Plankton community structure and role of Oithona similis on the western coast of Greenland during the winter-spring transition. Mar. Ecol. Prog. Ser. 483, 85–102 (2013).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Zamora-Terol, S., Kjellerup, S., Swalethorp, R., Saiz, E. & Nielsen, T. G. Population dynamics and production of the small copepod Oithona spp. in a subarctic fjord of West Greenland. Polar. Biol. 37, 953–965 (2014).

    Article 

    Google Scholar 

  • 31.

    Dvoretsky, V. G. & Dvoretsky, A. G. Life cycle of Oithona similis (Copepoda: Cyclopoida) in Kola Bay (Barents Sea). Mar. Biol. 156, 1433–1446 (2009).

    Article 

    Google Scholar 

  • 32.

    Glad, P. Seasonal occurrence of Oithona similis (cyclopoida), Microsetella norvegica (harpacticoida) and Microcalanus spp. (calanoida), and productivity of O. similis, in three high-latitude Norwegian fjords. Master thesis (UiT The Arctic University of Norway, 2018).

  • 33.

    Kosobokova, K. & Hirche, H. J. Biomass of zooplankton in the eastern Arctic Ocean—a baseline study. Progr. Oceanogr. 82, 265–280 (2009).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Bluhm, B., Kosobokova, K. & Carmack, E. A tale of two basins: An integrated physical and biological perspective of the deep Arctic Ocean. Prog. Oceanog. 139, 89–121 (2015).

    Article 

    Google Scholar 

  • 35.

    Hop, H. et al. Zooplankton in Kongsfjorden (1996–2016) in Relation to Climate Change in The Ecosystem of Kongsfjorden, Svalbard. In Advances in Polar Ecology Vol. 2 (eds Hop, H. & Wiencke, C.) 10.1007/978-3-319-46425–1_7 (Springer, New York, 2019).

    Google Scholar 

  • 36.

    Böttger-Schnack, R., Schnack, D. & Hagen, W. Microcopepod community structure in the Gulf of Aqaba and northern Red Sea, with special reference to Oncaeidae. J. Plankton Res. 30, 529–550 (2008).

    Article 

    Google Scholar 

  • 37.

    Cornwell, L. E. et al. Seasonality of Oithona similis and Calanus helgolandicus reproduction and abundance: Contrasting responses to environmental variation at a shelf site. J. Plankton Res. 40, 295–310 (2018).

    Article 

    Google Scholar 

  • 38.

    Kubiszyn, A. M. et al. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen). J. Mar. Syst. 169, 61–72 (2017).

    Article 

    Google Scholar 

  • 39.

    Kellogg, C. T. E., McClelland, J. W., Dunton, K. H. & Crump, B. C. Strong seasonality in Arctic estuarine microbial food webs. Front. Microbiol. 10, 2628. https://doi.org/10.3389/fmicb.2019.02628 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Bhaskar, J. T., Parli, B. V. & Tripathy, S. C. Spatial and seasonal variations of dinoflagellates and ciliates in the Kongsfjorden. Svalbard. Mar. Ecol. 41, 1–12 (2020).

    Article 

    Google Scholar 

  • 41.

    Skogseth, R. et al. Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation–An indicator for climate change in the European Arctic. Prog. Oceanog. 187, 102394. https://doi.org/10.1016/j.pocean.2020.102394 (2020).

    Article 

    Google Scholar 

  • 42.

    Ward, P. & Hirst, A. G. Oithona similis in a high latitude ecosystem: Abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod. Mar. Biol. 151, 1099–1110 (2007).

    Article 

    Google Scholar 

  • 43.

    Nielsen, T. G. & Sabatini, M. Role of cyclopoid copepods Oithona spp. in North Sea plankton communities. Mar. Ecol. Prog. Ser. 139, 79–93 (1996).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Nilsen, F., Cottier, F., Skogseth, R. & Mattsson, S. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 28, 1838–1853 (2008).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Cohen, J. H., Berge, J., Moline, M. A., Johnsen, G. & Zolich, A. P. Light in the Polar Night. In Polar Night Marine Ecology Advances in Polar Ecology Vol. 4 (eds Berge, J. et al.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-030-33208-2_3.

    Chapter 

    Google Scholar 

  • 46.

    Wiedmann, I., Reigstad, M., Marquardt, M., Vader, A. & Gabrielsen, T. M. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord—different from subarctic fjords?. J. Mar. Syst. 154, 192–205 (2015).

    Article 

    Google Scholar 

  • 47.

    Holm-Hansen, O. & Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 30, 438–447 (1978).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Stübner, E. I., Søreide, J. E., Reigstad, M., Marquardt, M. & Blachowiak-Samolyk, K. Year-round meroplankton dynamics in high-Arctic Svalbard. J. Plankton Res. 38, 522–536 (2016).

    Article 

    Google Scholar 

  • 49.

    Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M. & Gabrielsen, T. M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, West Spitsbergen). Appl. Environ. Microb. 82, 1868–1880 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Trantner, D. J. & Fraser, H. Zooplankton sampling. Monographs on Oceanographic Methodology 2. (UNESCO, 1968).

  • 51.

    Harris, R., Wiebe, L., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, Cambridge, 2000).

    Google Scholar 

  • 52.

    Espinasse, M. et al. Interannual phenological variability in two North-East Atlantic populations of Calanus finmarchicus. Mar. Biol. Res. 14, 752–767 (2018).

    Article 

    Google Scholar 

  • 53.

    Mackas, D. L., Batten, S. & Trudel, M. Effects on zooplankton of a warmer ocean: Recent evidence from the Northeast Pacific. Prog. Oceanogr. 75, 223–252 (2007).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Head, E. J. H., Melle, W., Pepin, P., Bagøien, E. & Broms, C. On the ecology of Calanus finmarchicus in the Subarctic North Atlantic: A comparison of population dynamics and environmental conditions in areas of the Labrador Sea-Labrador/Newfoundland Shelf and Norwegian Sea Atlantic and Coastal Waters. Prog. Oceanog. 114, 46–63 (2013).

    Article 

    Google Scholar 

  • 55.

    Kwasniewski, S. et al. Interannual changes in zooplankton on theWest Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. J. Mar. Sci. 69, 890–901 (2012).

    Google Scholar 

  • 56.

    Kiorboe, T. Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecol. 148, 40–50 (2006).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Thackeray, et al. Food web de-synchronization in England’s largest lake: An assessment based on multiple phenological metrics. Glob. Change Biol. 19, 3568–3580 (2013).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. (Primer-E Ltd., 2008).

  • 59.

    Clarke, K. R. & Gorley, R. N. Primer. (Primer-E Ltd., 2001).

  • 60.

    Anderson, M. J. & Braak, C. J. F. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 73, 85–113 (2003).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 61.

    Schlitzer, R. Ocean Data View; https://odv.awi.de, (2021).

  • 62.

    Walczowski, W., Piechura, J., Goszczko, I. & Wieczorek, P. Changes in Atlantic water properties: An important factor in the European Arctic marine climate. ICES J. Mar. Sci 69, 864–869 (2012).

    Article 

    Google Scholar 

  • 63.

    Wassman, P., Duarte, C. M., Agustí, S. & Sejr, M. L. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2010).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Andrews, A. J. et al. Boreal marine fauna from the Barents Sea disperse to Arctic Northeast Greenland. Sci Rep 9, 5799 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Beaugrand, G., Ibanez, F. & Reid, P. C. Spatial seasonal and long term fluctuations of plankton in relation to hydroclimatic features in the English Channel, Celtic Sea and Bay of Biscay. Mar. Ecol. Prog. Ser. 200, 93–102 (2000).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, A. & Edwards, M. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science 31, 1692–1694 (2002).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Coyle, K. O. et al. Climate change in the southeastern Bering Sea: Impacts on pollock stocks and implications for the oscillating control hypothesis. Fisher. Oceanogr. 20, 139–156 (2011).

    Article 

    Google Scholar 

  • 69.

    Edwards, M. & Richardson, A. J. The impact of climate change on the phenology of the plankton community and trophic mismatch. Nature 430, 881–884 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Stevens, G. C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article 

    Google Scholar 

  • 71.

    Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B. 282, 20151546 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).

    Article 

    Google Scholar 

  • 73.

    Kwasniewski, S. A note on zooplankton of the Hornsund Fjord and its seasonal changes. Oceanografia 12, 7–27 (1990).

    Google Scholar 

  • 74.

    Piwosz, K. et al. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in midsummer 2002. Polar Biol. 32, 549–559 (2009).

    Article 

    Google Scholar 

  • 75.

    Trudnowska, E., Basedow, S. L. & Blachowiak-Samolyk, K. Mid-summer mesozooplankton biomass, its size distribution, and estimated production within a glacial Arctic fjord (Hornsund, Svalbard). J. Mar. Syst. 137, 55–66 (2014).

    Article 

    Google Scholar 

  • 76.

    Castellani, C., Licandro, P., Fileman, E., di Capua, I. & Mazzocchi, M. G. Oithona similis likes it cool: Evidence from two long-term time series. J. Plankton Res. 38, 703–717 (2016).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Cornwell, L. E. et al. Resilience of the copepod Oithona similis to climatic variability: Egg production, mortality, and vertical habitat partitioning. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00029 (2020).

    Article 

    Google Scholar 

  • 78.

    Eiane, K. & Ohman, M. D. Stage-specific mortality of Calanus finmarchicus, Pseudocalanus elongatus and Oithona similis on Fladen Ground, North Sea, during a spring bloom. Mar. Ecol. Prog. Ser. 268, 183–193 (2004).

    ADS 
    Article 

    Google Scholar 

  • 79.

    Thor, P. et al. Post-spring bloom community structure of pelagic copepods in the Disko Bay, Western Greenland. J. Plankton Res. 27, 341–356 (2005).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Dvoretsky, V. G. Seasonal mortality rates of Oithona similis (Cyclopoida) in a large Arctic fjord. Polar Sci. 6, 263–269 (2012).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Ussing, H. H. The biology of some important plankton animals in the fjords of east Greenland. Medd Grønland 100–108 (1938).

  • 82.

    Lonsdale, D. J., Caron, D. A., Dennett, M. R. & Schaffner, R. Predation by Oithona spp on protozooplankton in the Ross Sea. Antarctica. Deep-Sea Res. II 47, 3273–3283 (2000).

    Google Scholar 

  • 83.

    Castellani, C., Irigoien, X., Harris, R. P. & Lampitt, R. S. Feeding and egg production of Oithona similis in the North Atlantic. Mar. Ecol. Prog. Ser. 288, 173–182 (2005).

    ADS 
    Article 

    Google Scholar 

  • 84.

    Barth-Jensen, C. et al. Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus. J. Plankton Res. 42, 564–580 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Falk-Petersen, S., Pedersen, G., Kwasniewski, S., Hegseth, E. N. & Hop, H. Spatial distribution and life-cycle timing of zooplankton in the marginal ice zone of the Barents Sea during the summer melt season in 1995. J. Plankton Res. 21, 1249–1264 (1999).

    Article 

    Google Scholar 

  • 86.

    Gluchowska, M. et al. Interannual zooplankton variability in the main pathways of the Atlantic water flow into the Arctic Ocean (Fram Strait and Barents Sea branches). ICES J. Mar. Sci. 74, 1921–1936 (2017).

    Article 

    Google Scholar 

  • 87.

    Balazy, K., Trudnowska, E. & Błachowiak-Samołyk, K. Dynamics of Calanus copepodite structure during Little Auks’ breeding seasons in two different Svalbard locations. Water 11, 1405. https://doi.org/10.3390/w11071405 (2019).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).

    Article 

    Google Scholar 

  • 89.

    Poje, A. The relationship between plankton and water mass properties in high Arctic (Svalbard) fjords. Clark Honors College Theses, (University of Oregon, 2016).

  • 90.

    Falk-Petersen, S., Mayzaud, P., Kattner, G. & Sargent, J. R. Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39 (2009).

    Article 

    Google Scholar 

  • 91.

    Svensen, C. et al. Zooplankton communities associated with new and regenerated primary production in the Atlantic inflow North of Svalbard. Front. Mar. Sci. 6, 293. https://doi.org/10.3389/fmars.2019.00293 (2019).

    Article 

    Google Scholar 

  • 92.

    González, H. E. & Smetacek, V. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar. Ecol. Prog. Ser. 113, 233–246 (1994).

    ADS 
    Article 

    Google Scholar 

  • 93.

    Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Berge, J. et al. In the dark: A review of ecosystem processes during the Arctic polar night. Progr. Oceanog. 139, 258–271 (2015).

    ADS 
    Article 

    Google Scholar 

  • 95.

    Narcy, F. et al. Seasonal and individual variability of lipid reserves in Oithona similis (Cyclopoida) in an Arctic fjord. Polar Biol. 32, 233–242 (2009).

    Article 

    Google Scholar 

  • 96.

    Kattner, G. & Hagen, W. Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 257–280 (Springer, New York, 2009).

    Chapter 

    Google Scholar 

  • 97.

    Rokkan Iversen, K. & Seuthe, L. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 34, 731–749 (2011).

    Article 

    Google Scholar 

  • 98.

    Auel, H. & Hagen, W. Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar. Biol. 140, 1013–1021 (2002).

    Article 

    Google Scholar 

  • 99.

    Madsen, S., Nielsen, T. & Hansen, B. Annual population development and production by small copepods in Disko Bay, western Greenland. Mar. Biol. 155, 63–77 (2008).

    Article 

    Google Scholar 

  • 100.

    Corkett, C. J. & McLaren, I. A. The biology of Pseudocalanus. In Advances in Marine Biology Vol. 15 (eds Russell, F. S. & Yonge, M.) 1–231 (Academic Press, Cambridge, 1978).

    Google Scholar 

  • 101.

    Kwasniewski, S., Hop, H., Falk-Petersen, S. & Pedersen, G. Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J. Plankton Res. 2003(25), 1–20 (2003).

    Article 

    Google Scholar 

  • 102.

    Willis, K., Cottier, F., Kwasniewski, S., Wold, A. & Falk-Petersen, S. The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst. 61, 39–54 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Crossing disciplines, adding fresh eyes to nuclear engineering