in

Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas

  • 1.

    Vitousek PM, Porder S, Houlton BZ, Oliver A, Vitousek PM, Porder S, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl. 2010;20:5–15.

    PubMed  Article  Google Scholar 

  • 2.

    Lundstrom US, Van Breemen N, Bain D. The podzolization process. A review. Geoderma. 2000;94:91–107.

    CAS  Article  Google Scholar 

  • 3.

    Crowley KF, Mcneil BE, Lovett GM, Canham CD, Driscoll CT, Rustad LE, et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems. 2012;15:940–57.

    CAS  Article  Google Scholar 

  • 4.

    Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, et al. Tree mineral nutrition is deteriorating in Europe. Glob Change Biol. 2015;21:418–30.

    Article  Google Scholar 

  • 5.

    Hayward J, Horton TR, Nu MA. Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. N Phytol. 2015;208:497–506.

    Article  Google Scholar 

  • 6.

    Köhler J, Yang N, Pena R, Raghavan V, Polle A, Meier IC. Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. N Phytol. 2018;220:1200–10.

    Article  Google Scholar 

  • 7.

    Kranabetter JM, Harman-Denhoed R, Hawkins BJ. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C: N: P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. N Phytol. 2019;221:482–92.

    CAS  Article  Google Scholar 

  • 8.

    Ning C, Xiang W, Mueller GM. Differences in ectomycorrhizal community assembly between native and exotic pines are reflected in their enzymatic functional capacities. Plant Soil. 2019;446:179–93.

    Article  CAS  Google Scholar 

  • 9.

    Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, et al. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem. 2010;42:679–98.

    CAS  Article  Google Scholar 

  • 10.

    Cairney JWG. Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil. 2011;344:51–71.

    CAS  Article  Google Scholar 

  • 11.

    Hodge A. Accessibility of inorganic and organic nutrients for mycorrhizas. In: Johnson NC, Gehring CA, Jansa J, editors. Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Amsterdam: Elsevier; 2017. p. 129–48.

  • 12.

    Plassard C, Louche J, Ali MA, Duchemin M, Legname E, Cloutier-Hurteau B. Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Ann Sci. 2011;68:33–43.

    Article  Google Scholar 

  • 13.

    Becquer A, Trap J, Irshad U, Ali MA, Claude P. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front Plant Sci. 2014;5:1–7.

    Article  Google Scholar 

  • 14.

    Tunlid A, Floudas D, Koide RT, Rineau F. Soil organic matter decomposition mechanisms in ectomycorrhizal fungi. In: Martin FM, editor. Molecular mycorrhizal symbiosis. 1st ed. Hoboken, New Jersey, USA: John Wiley & Sons, Inc; 2017. p. 257–75.

  • 15.

    Nannipieri P, Giagnoni L, Landi L, Renella G. Role of phosphatase enzymes in soil. In: Bunemann et al., editors. Phosphorus in action. Berlin, Heidelberg: Springer Verlag; 2011. p. 215–43.

  • 16.

    Jarosch KA, Kandeler E, Frossard E, Bünemann EK. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability? Soil Biol Biochem. 2019;139:1–11.

    Article  CAS  Google Scholar 

  • 17.

    Bending GD, Read DJ. The structure and function of the vegetative mycelium of ectomycorrhizal plants: VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. N Phytol. 1995;130:411–7.

    CAS  Article  Google Scholar 

  • 18.

    Liu X, Feng F, He X, Song F. The effect of ectomycorrhizal fungi on litter decomposition and phosphorus availability to Pinus koraiensis. Int J Agric Biol. 2017;19:1019–24.

    CAS  Article  Google Scholar 

  • 19.

    Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? N Phytol. 2003;157:475–92.

    Article  Google Scholar 

  • 20.

    Jones MD, Twieg BD, Ward V, Barker JS, Durall DM, Simard SW. Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol. 2010;24:1139–51.

    Article  Google Scholar 

  • 21.

    Alvarez M, Huygens D, Díaz LM, Villanueva CA, Heyser W, Boeckx P. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake. Plant, Cell Environ. 2012;35:126–35.

    CAS  Article  Google Scholar 

  • 22.

    Walker JKM, Cohen H, Higgins LM, Kennedy PG. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. N Phytol. 2014;202:287–96.

    CAS  Article  Google Scholar 

  • 23.

    Zavišić A, Nassal P, Yang N, Heuck C, Spohn M, Marhan S, et al. Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biol Biochem. 2016;98:127–37.

    Article  CAS  Google Scholar 

  • 24.

    Patterson A, Flores-renter L, Whipple A, Whitham T, Gehring C. Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. N Phytol. 2019;221:493–502.

    CAS  Article  Google Scholar 

  • 25.

    Koide RT, Fernandez C, Petprakob K. General principles in the community ecology of ectomycorrhizal fungi. Ann Sci. 2011;68:45–55.

    Article  Google Scholar 

  • 26.

    Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 2016;10:885–96.

    PubMed  Article  Google Scholar 

  • 27.

    Courty P-E, Munoz F, Selosse M-A, Duchemin M, Criquet S, Ziarelli F, et al. Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities. J Ecol. 2016;104:1585–98.

    Article  Google Scholar 

  • 28.

    Walker JKM, Ward V, Jones MD. Ectomycorrhizal fungal exoenzyme activity differs on spruce seedlings planted in forests versus clearcuts. Trees – Struct Funct. 2016;30:497–508.

    CAS  Article  Google Scholar 

  • 29.

    Kyaschenko J, Clemmensen KE, Karltun E, Lindahl BD. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol Lett. 2017;20:1546–55.

    PubMed  Article  Google Scholar 

  • 30.

    Kranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T. Species turnover (beta-diversity) in ectomycorrhizal fungi linked to NH4 (+) uptake capacity. Mol Ecol. 2015;24:5992–6005.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci. 2010;107:2093–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Pickles BJ, Twieg BD, Neill GAO, Mohn WW, Simard SW. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. N Phytol. 2015;207:858–71.

    Article  Google Scholar 

  • 33.

    Kranabetter JM, Stoehr M, O’Neill GA. Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir. N Phytol. 2015;206:1135–44.

    CAS  Article  Google Scholar 

  • 34.

    Mooshammer M, Wanek W, Zechmeister-boltenstern S, Richter A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol. 2014;5:1–11.

    Article  Google Scholar 

  • 35.

    Treseder KK, Vitousek PM. Effects of soil nutrient availablity on investment in acquisition of N and P in Hawaiian rain forests. Ecology. 2001;82:946–54.

    Article  Google Scholar 

  • 36.

    Revillini D, Gehring CA, Johnson NC. The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct Ecol. 2016;30:1086–98.

    Article  Google Scholar 

  • 37.

    Marklein AR, Houlton BZ. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. N Phytol. 2011;193:696–704.

    Article  CAS  Google Scholar 

  • 38.

    Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr. 2015;85:133–55.

    Article  Google Scholar 

  • 39.

    Carter MR, Gregorich E. Soil sampling and methods of analysis. 2nd ed. Boca Raton, Florida: CRC Press; 2008. p. 823.

  • 40.

    Green RN, Trowbridge RL, Klinka K. Towards a taxonomic classification of humus forms. Sci Monogr. 1993;29:1–48.

    Google Scholar 

  • 41.

    Cade-Menun BJ. Improved peak identification in 31 P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma. 2015;257–258:102–14.

    Article  CAS  Google Scholar 

  • 42.

    Pritsch K, Courty PE, Churin JL, Cloutier-Hurteau B, Ali MA, Damon C, et al. Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza. 2011;21:589–600.

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Eivazi F, Tabatabai M. Phosphatases in soils. Soil Biol Biochem. 1977;9:167–72.

    CAS  Article  Google Scholar 

  • 44.

    Pritsch K, Garbaye J. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann Sci. 2011;68:25–32.

    Article  Google Scholar 

  • 45.

    Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J. Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. N Phytol. 2005;167:309–19.

    CAS  Article  Google Scholar 

  • 46.

    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.

    Article  CAS  PubMed  Google Scholar 

  • 47.

    Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

    Google Scholar 

  • 48.

    Gerz M, Guillermo Bueno C, Ozinga WA, Zobel M, Moora M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J Ecol. 2018;106:254–64.

    CAS  Article  Google Scholar 

  • 49.

    Carrara JE, Walter CA, William JSH, Brzostek ER, Averill TPC. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Glob Change Biol. 2018;24:2721–34.

    Article  Google Scholar 

  • 50.

    Bartlett EM, Lewis DH. Surface phosphatase activity of mycorrhizal roots of Beech. Soil Biol Biochem. 1973;5:249–57.

    CAS  Article  Google Scholar 

  • 51.

    Allison SD, Vitousek PM. Responses of extracell enzymes to simple and complex nutrient inputs. Soil Biol Biochem. 2005;37:937–44.

  • 52.

    Alexander IJ, Hardy K. Surface phosphatase activity of Sitka spruce mycorrhizas from a serpentine site. Soil Biol Biochem. 1981;13:301–5.

    CAS  Article  Google Scholar 

  • 53.

    Ali MA, Louche J, Legname E, Duchemin M, Plassard C. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Tree Physiol. 2009;29:1587–97.

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Antibus RK, Sinsabaugh RL, Linkins AE. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot. 1992;70:794–801.

    CAS  Article  Google Scholar 

  • 55.

    Tibbett M, Sanders FE, Cairney JWG. The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res. 1998;102:129–35.

    CAS  Article  Google Scholar 

  • 56.

    van Aarle IM, Plassard C. Spatial distribution of phosphatase activity associated with ectomycorrhizal plants is related to soil type. Soil Biol Biochem. 2010;42:324–30.

    Article  CAS  Google Scholar 

  • 57.

    Kroehler J, Linkins E. The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Can J Bot. 1987;66:750–6.

    Article  Google Scholar 

  • 58.

    Horsman GP, Zechel DL. Phosphonate biochemistry. Chem Rev. 2017;117:5704–83.

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Turner BL. Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ, editors. Inositol phosphates: linking agriculture and the environment. Wallingford, UK: CAB International; 2007. p. 186–207.

  • 60.

    Colpaert JV, Van Laere A, Van Tichelen KK, Van, Assche JA. The use of inositol hexaphosphate as a phosphorus as a phosphorus source by mycorrhizal and non-mycorrhizal Scots Pine (Pinus sylvestris). Funct Ecol. 1997;11:407–15.

    Article  Google Scholar 

  • 61.

    Leake JR, Miles W. Phosphodiesters as mycorrhizal P sources I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoseyphus ericae. N Phytol. 1996;132:435–43.

    CAS  Article  Google Scholar 

  • 62.

    Lang F, Krüger J, Amelung W, Willbold S, Frossard E, Bünemann EK, et al. Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry. 2017;136:5–29.

    CAS  Article  Google Scholar 

  • 63.

    Criquet S, Ferre E, Farnet AM, Le Petit J. Annual dynamics of phosphatase activities in an evergreen oak litter: Influence of biotic and abiotic factors. Soil Biol Biochem. 2004;36:1111–8.

    CAS  Article  Google Scholar 

  • 64.

    Antibus RK, Bower D, Dighton J. Root surface phosphatase activities and uptake of 32P-labelled inositol phosphate in field-collected gray birch and red maple roots. Mycorrhiza. 1997;7:39–46.

    CAS  Article  Google Scholar 

  • 65.

    Steidinger BS, Turner BL, Corrales A, Dalling JW. Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species. Funct Ecol. 2015;29:121–30.

    Article  Google Scholar 

  • 66.

    Tate KR, Newman RH. Phosphorus fractions of a climosequence of soils in New Zealand tussock grasslands. Soil Biol Biochem. 1981;191:191–6.

    Google Scholar 

  • 67.

    Stewart JWB, Tiessen H. Dynamics of soil organic phosphorus. Biogeochemistry. 1987;4:41–60.

    CAS  Article  Google Scholar 

  • 68.

    Turner BL, Haygarth PM. Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci Total Environ. 2005;344:27–36.

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS. 2004;101:11001–6.

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. N Phytol. 2015;206:1196–206.

    Article  Google Scholar 

  • 71.

    Zhang H, Wang J, Wang J, Guo Z, Geo G, Zeng D. Tree stoichiometry and nutrient resorption along a chronosequence of Metasequoia glyptostroboides forests in coastal China. Ecol Manag. 2018;430:445–50.

    Article  Google Scholar 

  • 72.

    Duquesnay A, Dupouey JL, Clement A, Ulrich E, Tacon FLE. Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in northeastern France. Tree Physiol. 2000;20:13–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Kranabetter JM, Berch S, MacKinnon J, Ceska O, Dunn D, Ott P. Species–area curve and distance–decay relationships indicate habitat thresholds of ectomycorrhizal fungi in an old-growth Pseudotsuga menziesii landscape. Divers Distrib. 2018;24:755–64.

    Article  Google Scholar 

  • 74.

    Zavisic A, Yang N, Marhan S, Kandeler E, Polle A. Forest soil phosphorus resources and fertilization affect ectomycorrhizal community composition, Beech P uptake efficiency, and photosynthesis. Front Plant Sci. 2018;9:1–13.

    Article  Google Scholar 

  • 75.

    Bogar L, Peay KG, Kornfeld A, Huggins J, Hortal S, Anderson I, et al. Plant-mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza. 2019;29:97–111.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Hortal S, Plett KL, Plett JM, Cresswell T, Johansen M, Pendall E, et al. Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J. 2017;11:2666–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.

    PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Nicholson BA, Jones MD. Early-successional ectomycorrhizal fungi effectively support extracellular enzyme activities and seedling nitrogen accumulation in mature forests. Mycorrhiza. 2017;27:247–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Marupakula S, Mahmood S, Jernberg J, Nallanchakravarthula S, Fahad ZA, Finlay RD. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environ Microbiol. 2017;19:4736–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Cullings K, Ishkhanova G, Henson J. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia. 2008;158:77–83.

    PubMed  Article  Google Scholar 

  • 81.

    Jones MD, Phillips LA, Treu R, Ward V, Berch SM. Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in central British Columbia. Appl Soil Ecol. 2012;60:29–40.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy