Meng, H. H. & Zhang, M. L. Diversification of plant species in arid Northwest China: species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Mol. Phylogenet. Evol. 68, 398–409. https://doi.org/10.1111/jse.12088 (2015).
Google Scholar
Pennington, R. T. et al. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc. Natl. Acad. Sci. USA 107, 13783–13787. https://doi.org/10.1073/pnas.1001317107 (2010).
Google Scholar
Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334–10339. https://doi.org/10.1073/pnas.0601928103 (2006).
Google Scholar
Johansson, U. S. et al. Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution 61, 324–333. https://doi.org/10.1111/j.1558-5646.2007.00024.x (2007).
Google Scholar
Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 207, 275–282. https://doi.org/10.1111/nph.13230 (2015).
Google Scholar
Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442. https://doi.org/10.1111/nph.13920 (2016).
Google Scholar
Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910. https://doi.org/10.1111/jbi.12899 (2017).
Google Scholar
Zhang, J. Y. & Zhang, Z. In Flora of Chinese Fruit Trees 61–62 (China Forestry Press, 2003).
Su, Z., Zhang, M. & Sanderson, S. C. Chloroplast phylogeography of Helianthemum songaricum (Cistaceae) from northwestern China: implications for preservation of genetic diversity. Conserv. Genet. 12, 1525–1537. https://doi.org/10.1007/s10592-011-0250-9 (2011).
Google Scholar
Xie, K. Q. & Zhang, M. L. The effect of Quaternary climatic oscillations on Ribes meyeri (Saxifragaceae) in northwestern China. Biochem. Syst. Ecol. 50, 39–47. https://doi.org/10.1016/j.bse.2013.03.031 (2013).
Google Scholar
Salvi, D., Schembri, P., Sciberras, A. & Harris, D. Evolutionary history of the maltese wall lizard Podarcis filfolensis: insights on the ‘Expansion–Contraction’ model of Pleistocene biogeography. Mol. Ecol. 23, 1167–1187. https://doi.org/10.1111/mec.12668 (2014).
Google Scholar
Liu, J. Q., Sun, Y. S., Ge, X. J., Gao, L. M. & Qiu, Y. X. Phylogeographic studies of plants in China: advances in the past and directions in the future. J. Syst. Evol. 50, 267–275. https://doi.org/10.1111/j.1759-6831.2012.00214.x (2012).
Google Scholar
Hewitt, G. The genetic legacy of the quaternary ice ages. Nature 405, 907–913. https://doi.org/10.1038/35016000 (2000).
Google Scholar
Hewitt, G. M. The structure of biodiversity-insights from molecular phylogeography. Front. Zool. 1, 1–16. https://doi.org/10.1186/1742-9994-1-4 (2004).
Google Scholar
Willis, K. J. & Niklas, K. J. The role of quaternary environmental change in plant macroevolution: the exception or the rule?. Philos. Trans. R. Soc. Lond. B 359, 159–172. https://doi.org/10.1098/rstb.2003.1387 (2004).
Google Scholar
Schmitt, T. Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front. Zool. 4, 11. https://doi.org/10.1186/1742-9994-4-11 (2007).
Google Scholar
Shen, L., Chen, X. Y. & Li, Y. Y. Glacial refugia and postglacial recolonization patterns of organisms. Acta Ecol. Sin. 22, 1983–1990. https://doi.org/10.1088/1009-1963/11/5/313 (2002).
Google Scholar
Schonswetter, P., Popp, M. & Brochmann, C. Rare arctic-alpine plants of the European Alps have different immigration histories: the snow bed species Minuartia biflora and Ranunculus pygmaeus. Mol. Ecol. 15, 709–720. https://doi.org/10.1111/j.1365-294X.2006.02821.x (2006).
Google Scholar
Guo, Y. P., Zhang, R., Chen, C. Y., Zhou, D. W. & Liu, J. Q. Allopatric divergence and regional range expansion of Juniperus sabina in China. J. Syst. Evol. 48, 153–160. https://doi.org/10.1111/j.1759-6831.2010.00073.x (2010).
Google Scholar
Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747. https://doi.org/10.1111/j.1365-294X.2004.02258.x (2004).
Google Scholar
Afzal-Rafii, Z. & Dodd, R. S. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol. Ecol. 16, 723–736. https://doi.org/10.1111/j.1365-294X.2006.03183.x (2007).
Google Scholar
Anderson, L., Hu, F., Nelson, D., Petit, R. & Paige, K. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proc. Natl. Acad. Sci. USA 103, 12447–12450. https://doi.org/10.1073/pnas.0605310103 (2006).
Google Scholar
Volkova, P. A., Burlakov, Y. A. & Schanzer, I. A. Genetic variability of Prunus padus (Rosaceae) elaborates “a new Eurasian phylogeographical paradigm”. Plant Syst. Evol. 306, 1–9. https://doi.org/10.1007/s00606-020-01644-0 (2020).
Google Scholar
Xu, Z. & Zhang, M. L. Phylogeography of the arid shrub Atraphaxis frutescens (Polygonaceae) in northwestern China: evidence from cpDNA sequences. J. Hered. 106, 184–195. https://doi.org/10.1093/jhered/esu078 (2015).
Google Scholar
Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America, Exclusive of the Subtropical and Warmer Temperate Regions 345–346 (Macmillan, 1927).
Zhebentyayeva, T. N., Ledbetter, C., Burgos, L., & Llácer, G. Fruit Breeding 415–458 (Springer, 2012).
Zhebentyayeva, T. N., Reighard, G. L., Gorina, V. M. & Abbott, A. G. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. Appl. Genet. 106, 435–444. https://doi.org/10.1007/s00122-002-1069-z (2003).
Google Scholar
Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T. & Smith, W. A. Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7, 465–474. https://doi.org/10.1046/j.1365-294x.1998.00318.x (1998).
Google Scholar
Avise, J. C. Phylogeography: retrospect and prospect. J. Biogeogr. 36, 3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x (2009).
Google Scholar
Poudel, R. C., Möller, M., Li, D. Z., Shah, A. & Gao, L. M. Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet. Genom. 10, 653–665. https://doi.org/10.1007/s11295-014-0711-7 (2014).
Google Scholar
Dutech, C., Maggia, L. & Joly, H. Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol. Ecol. 9, 1427–1432. https://doi.org/10.1046/j.1365-294x.2000.01027.x (2000).
Google Scholar
Li, Y. et al. Rapid intraspecific diversification of the Alpine species Saxifraga sinomontana (Saxifragaceae) in the Qinghai-Tibetan Plateau and Himalayas. Front. Genet. 9, 381. https://doi.org/10.3389/fgene.2018.00381 (2018).
Google Scholar
Zhang, Q. P. & Liu, W. S. Advances of the apricot resources collection, evaluation and germplasm enhancement. Acta Hortic. Sin. 45, 1642–1660. https://doi.org/10.16420/j.issn.0513-353x.2017-0654 (2018).
Google Scholar
Hu, Z. B. et al. Population genomics of pearl millet (Pennisetum glaucum (L). R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16, 1048. https://doi.org/10.1186/s12864-015-2255-0 (2015).
Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 18, 315–322 (1990).
Dong, W. et al. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 5, 8348. https://doi.org/10.1038/srep08348 (2015).
Google Scholar
Bortiri, E. et al. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26, 797–807. https://doi.org/10.1043/0363-6445-26.4.797 (2001).
Google Scholar
Zhang, Q. Y. et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci. 9, 1876. https://doi.org/10.3389/fpls.2018.01876 (2018).
Google Scholar
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sumo. Ser. 41, 95–98. https://doi.org/10.1021/bk-1999-0734.ch008 (1999).
Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).
Google Scholar
Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381. https://doi.org/10.1080/10635159950173889 (2000).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
Google Scholar
Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x (2000).
Google Scholar
Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).
Google Scholar
Pons, O. & Petit, R. J. Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144, 1237–1245. https://doi.org/10.1016/S1050-3862(96)00162-3 (1996).
Google Scholar
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
Google Scholar
Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
Google Scholar
Wolfe, K. H., Li, W. H. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84, 9054–9058. https://doi.org/10.1073/pnas.84.24.9054 (1987).
Google Scholar
Wang, Z. et al. Phylogeography study of the Siberian apricot (Prunus sibirica L.) in Northern China assessed by chloroplast microsatellite and DNA makers. Front. Plant Sci. 8, 1989. https://doi.org/10.3389/fpls.2017.01989 (2017).
Google Scholar
Chin, S. W., Shaw, J., Haberle, R., Wen, J. & Potter, D. Diversification of almonds, peaches, plums and cherries-Molecular systematics and biogeographic history of Prunus (Rosaceae). Mol. Phylogenet. Evol. 76, 34–48. https://doi.org/10.1016/j.ympev.2014.02.024 (2014).
Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).
Google Scholar
Yang, J., Vazquez, L., Feng, L., Liu, Z. & Zhao, G. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 9, 1534. https://doi.org/10.3389/fpls.2018.01534 (2018).
Google Scholar
Zhang, X., Shen, S., Wu, F. & Wang, Y. Inferring genetic variation and demographic history of Michelia yunnanensis Franch (Magnoliaceae) from chloroplast DNA sequences and microsatellite markers. Front. Plant Sci. 8, 583. https://doi.org/10.3389/fpls.2017.00583 (2017).
Google Scholar
Li, M., Zhao, Z. & Miao, X. J. Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet. Resour. Crop Evol. 60, 2293–2302. https://doi.org/10.1007/s10722-013-9996-x (2013).
Google Scholar
Li, M., Hu, X., Miao, X. J., Xu, Z. & Zhao, Z. Genetic diversity analysis of wild apricot (Prunus armeniaca) populations in the lli Valley as revealed by SRAP markers. Acta Hortic. Sin. 43, 1980–1988. https://doi.org/10.16420/j.issn.0513-353x.2016-0156 (2016).
Google Scholar
Hu, X., Zheng, P., Ni, B., Miao, X. & Li, M. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by SSR markers in the Tien-Shan mountains of China. Pak. J. Bot. 50, 609–615 (2018).
Decroocq, S. et al. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol. Ecol. 25, 4712–4729. https://doi.org/10.1111/mec.13772 (2016).
Google Scholar
Liu, S. et al. The complex evolutionary history of apricots: species divergence, gene flow and multiple domestication events. Mol. Ecol. Notes 28, 5299–5314. https://doi.org/10.1111/mec.15296 (2019).
Google Scholar
Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. 16, 37–45. https://doi.org/10.1016/S0169-5347(00)02026-7 (2001).
Google Scholar
Boulnois, L. Silk Road: Monks, Warriors & Merchants on the Silk Road 115–165 (WW Norton & Co Inc, 2004).
Zhao, C., Wang, C. B., Ma, X. G., Liang, Q. L. & He, X. J. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol. Phylogen. Evol. 68, 628–643. https://doi.org/10.1016/j.ympev.2013.04.007 (2013).
Google Scholar
Ebersbach, J., Schnitzler, J., Favre, A. & Muellner-Riehl, A. N. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol. Biol. https://doi.org/10.1186/s12862-017-0967-2 (2017).
Google Scholar
Favre, A. et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253. https://doi.org/10.1111/brv.12107 (2015).
Google Scholar
Source: Ecology - nature.com