Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Mooij, W. M. et al. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 39, 381–400 (2005).
Google Scholar
Walter, B., Peters, J. & van Beusekom, J. E. E. The effect of constant darkness and short light periods on the survival and physiological fitness of two phytoplankton species and their growth potential after re-illumination. Aquat. Ecol. 51, 591–603 (2017).
Google Scholar
Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).
Google Scholar
Wagner, H., Fanesi, A. & Wilhelm, C. Title: Freshwater phytoplankton responses to global warming. J. Plant Physiol. 203, 127–134 (2016).
Google Scholar
Gilbert, J. A. Some phytoplankton like it hot. Nat. Clim. Change 3, 954–955 (2013).
Google Scholar
Hense, I., Meier, H. E. M. & Sonntag, S. Projected climate change impact on Baltic Sea cyanobacteria: Climate change impact on cyanobacteria. Clim. Change 119, 391–406 (2013).
Google Scholar
Trombetta, T. et al. Water temperature drives phytoplankton blooms in coastal waters. PLoS One 14, e0214933 (2019).
Google Scholar
Jin, P. & Agustí, S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci. Rep. 8, 17771 (2018).
Google Scholar
Pinceel, T., Buschke, F., Weckx, M., Brendonck, L. & Vanschoenwinkel, B. Climate change jeopardizes the persistence of freshwater zooplankton by reducing both habitat suitability and demographic resilience. BMC Ecol. 18, 1–9 (2018).
Google Scholar
Shin, H. R. & Kneitel, J. M. Warming interacts with inundation timing to influence the species composition of California vernal pool communities. Hydrobiologia 843, 93–105 (2019).
Google Scholar
Montrone, A. et al. Climate change impacts on vernal pool hydrology and vegetation in northern California. J. Hydrol. 574, 1003–1013 (2019).
Google Scholar
Williams, D. D. The biology of temporary waters. Biol. Tempor. Waters https://doi.org/10.1093/acprof:oso/9780198528128.001.0001 (2007).
Google Scholar
Waterkeyn, A., Grillas, P., Vanschoenwinkel, B. & Brendonck, L. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshw. Biol. 53, 1808–1822 (2008).
Google Scholar
Lemmens, P. et al. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS One 8, e72538 (2013).
Google Scholar
Lischeid, G. et al. Natural ponds in an agricultural landscape: External drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica 68, 5–16 (2018).
Google Scholar
Mancinelli, G., Mali, S. & Belmonte, G. Species richness and taxonomic distinctness of zooplankton in ponds and small lakes from Albania and North Macedonia: The role of bioclimatic factors. Water (Switzerland) 11, 2384 (2019).
Gołdyn, B., Kowalczewska-Madura, K. & Celewicz-Gołdyn, S. Drought and deluge: Influence of environmental factors on water quality of kettle holes in two subsequent years with different precipitation. Limnologica 54, 14–22 (2015).
Google Scholar
Salmaso, N. & Tolotti, M. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia https://doi.org/10.1007/s10750-020-04323-w (2020).
Google Scholar
Celewicz, S., Czyż, M. J. & Gołdy, B. Feeding patterns in Eubranchipus grubii (Dybowski 1860) (Branchiopoda: Anostraca) and its potential influence on the phytoplankton communities of vernal pools. J. Limnol. 77, 276–284 (2018).
Google Scholar
Rasconi, S., Winter, K. & Kainz, M. J. Temperature increase and fluctuation induce phytoplankton biodiversity loss—Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 7, 2936–2946 (2017).
Google Scholar
Celewicz-Goldyn, S. & Kuczynska-Kippen, N. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS One 12, e0177317 (2017).
Google Scholar
Kozak, A., Celewicz-Gołdyn, S. & Kuczyńska-Kippen, N. Cyanobacteria in small water bodies: The effect of habitat and catchment area conditions. Sci. Total Environ. 646, 1578–1587 (2019).
Google Scholar
Iacarella, J. C., Barrow, J. L., Giani, A., Beisner, B. E. & Gregory-Eaves, I. Shifts in algal dominance in freshwater experimental ponds across differing levels of macrophytes and nutrients. Ecosphere 9, e02086 (2018).
Google Scholar
Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).
Google Scholar
Richardson, J. et al. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Glob. Change Biol. 25, 3365–3380 (2019).
Google Scholar
De Senerpont Domis, L. N., Mooij, W. M. & Huisman, J. Climate-induced shifts in an experimental phytoplankton community: A mechanistic approach. Hydrobiologia 584, 403–413 (2007).
Google Scholar
Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).
Google Scholar
Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).
Google Scholar
Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).
Google Scholar
Machado, K. B., Vieira, L. C. G. & Nabout, J. C. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia 830, 115–134 (2019).
Google Scholar
O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).
Google Scholar
Rasconi, S., Gall, A., Winter, K. & Kainz, M. J. Increasing water temperature triggers dominance of small freshwater plankton. PLoS One 10, e0140449 (2015).
Google Scholar
Wirth, C., Limberger, R. & Weisse, T. Temperature × light interaction and tolerance of high water temperature in the planktonic freshwater flagellates Cryptomonas (Cryptophyceae) and Dinobryon (Chrysophyceae). J. Phycol. 55, 404–414 (2019).
Google Scholar
Wang, H. et al. High antioxidant capability interacts with respiration to mediate two Alexandrium species growth exploitation of photoperiods and light intensities. Harmful Algae 82, 26–34 (2019).
Google Scholar
Fakhri, M., Arifin, N. B., Budianto, B., Yuniarti, A. & Hariati, A. M. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nat. Environ. Pollut. Technol. 14, 563–566 (2015).
Torzillo, G., Sacchi, A. & Materassi, R. Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour. Technol. 38, 95–100 (1991).
Google Scholar
Shatwell, T., Köhler, J. & Nicklisch, A. Temperature and photoperiod interactions with phosphorus-limited growth and competition of two diatoms. PLoS One 9, e102367 (2014).
Google Scholar
Li, G., Talmy, D. & Campbell, D. A. Diatom growth responses to photoperiod and light are predictable from diel reductant generation. J. Phycol. 53, 95–107 (2017).
Google Scholar
Reynolds, C. S. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Excellence in Ecology Vol. 77 (Ecology Institute, 1997).
Elliott, J. A., Jones, I. D. & Thackeray, S. J. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559, 401–411 (2006).
Google Scholar
Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).
Google Scholar
Elliott, J. A. Is the future blue–green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res. 46, 1364–1371 (2012).
Google Scholar
Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).
Google Scholar
Hansson, L. A. et al. Food-chain length alters community responses to global change in aquatic systems. Nat. Clim. Change 3, 228–233 (2013).
Google Scholar
Burgmer, T. & Hillebrand, H. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120, 922–933 (2011).
Google Scholar
Hillebrand, H., Burgmer, T. & Biermann, E. Running to stand still: Temperature effects on species richness, species turnover, and functional community dynamics. Mar. Biol. 159, 2415–2422 (2012).
Google Scholar
Lewandowska, A. M. et al. Responses of primary productivity to increased temperature and phytoplankton diversity. J. Sea Res. 72, 87–93 (2012).
Google Scholar
Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 85, 359–364 (2014).
Google Scholar
Bergkemper, V., Stadler, P. & Weisse, T. Moderate weather extremes alter phytoplankton diversity—A microcosm study. Freshw. Biol. 63, 1211–1224 (2018).
Google Scholar
McMinn, A. & Martin, A. Dark survival in a warming world. Proc. R. Soc. B Biol. Sci. 280, 20122909 (2013).
Google Scholar
Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 1–10 (2019).
Google Scholar
Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).
Google Scholar
Reeves, S., McMinn, A. & Martin, A. The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biol. 34, 1019–1032 (2011).
Google Scholar
van de Poll, W. H., Abdullah, E., Visser, R. J. W., Fischer, P. & Buma, A. G. J. Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol. Oceanogr. 65, 903–914 (2020).
Google Scholar
Poniewozik, M. & Juráň, J. Extremely high diversity of euglenophytes in a small pond in eastern Poland. Plant Ecol. Evol. 151, 18–34 (2018).
Google Scholar
Shafik, H. M., Herodek, S., Présing, M. & Vörös, L. Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Wołoszyńska) Seenayya et Subba Raju. Algol. Stud. Hydrobiol. Suppl. 103, 75–93 (2001).
Tang, E. P. Y. & Vincent, W. F. Effects of daylength and temperature on the growth and photosynthesis of an Arctic cyanobacterium, Schizothrix calcicola (Oscillatoriaceae). Eur. J. Phycol. 35, 263–272 (2000).
Google Scholar
Agasild, H., Zingel, P., Tõnno, I., Haberman, J. & Nõges, T. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584, 167–177 (2007).
Google Scholar
Gołdyn, R. & Kowalczewska-Madura, K. Interactions between phytoplankton and zooplankton in the hypertrophic Swarzȩdzkie Lake in western Poland. J. Plankton Res. 30, 33–42 (2008).
Google Scholar
Tovar-Sanchez, A., Duarte, C. M., Hernández-León, S. & Sañudo-Wilhelmy, S. A. Krill as a central node for iron cycling in the Southern Ocean. Geophys. Res. Lett. 34, L11601 (2007).
Google Scholar
Hunt, R. J. & Matveev, V. F. The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir: An enclosure study. Limnologica 35, 90–101 (2005).
Google Scholar
Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).
Google Scholar
Gołdyn, B., Chudzińska, M., Barałkiewicz, D. & Celewicz-Gołdyn, S. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicol. Environ. Saf. 118, 103–111 (2015).
Google Scholar
IPCC. Climate Change 2007: The Physical Science Basis (Cambridge University Press, 2007).
Christensen, J. H. & Christensen, O. B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change 81, 7–30 (2007).
Google Scholar
Beniston, M. et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Change 81, 71–95 (2007).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Arbizu, P. M. pairwiseAdonis: Pairwise Multilevel Comparison Using Adonis. R Packag. version 0.0.1. (2017).
Rink, B. & Raak, C. J. F. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148 (1999).
Google Scholar
Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data using CANOCO. Bulletin of the Ecological Society of America Vol. 87 (Cambridge University Press, 2003).
Google Scholar
Jongman, R. H. G., Ter Braak, C. J. F. & van Tongeren, O. F. R. Data Analysis in Community and Landscape Ecology. Data Analysis in Community and Landscape Ecology (Cambridge University Press, 1995). https://doi.org/10.1017/cbo9780511525575.
Google Scholar
ter Braak, J. F. C. & Šmilauer, P. Canoco Reference Manual and CanoDraw for Windows User’s Guide (Microcomputer Power, 2002).
R Development Core Team. R: A Language and Environment for Statistical Computing (2020).
Oksanen, J. et al. vegan: Community Ecology Package. R Packag. version 2.5-7 (2020).
Source: Ecology - nature.com