in

Phytoplankton communities in temporary ponds under different climate scenarios

  • 1.

    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Mooij, W. M. et al. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 39, 381–400 (2005).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Walter, B., Peters, J. & van Beusekom, J. E. E. The effect of constant darkness and short light periods on the survival and physiological fitness of two phytoplankton species and their growth potential after re-illumination. Aquat. Ecol. 51, 591–603 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).

    Article 

    Google Scholar 

  • 5.

    Wagner, H., Fanesi, A. & Wilhelm, C. Title: Freshwater phytoplankton responses to global warming. J. Plant Physiol. 203, 127–134 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Gilbert, J. A. Some phytoplankton like it hot. Nat. Clim. Change 3, 954–955 (2013).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Hense, I., Meier, H. E. M. & Sonntag, S. Projected climate change impact on Baltic Sea cyanobacteria: Climate change impact on cyanobacteria. Clim. Change 119, 391–406 (2013).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Trombetta, T. et al. Water temperature drives phytoplankton blooms in coastal waters. PLoS One 14, e0214933 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Jin, P. & Agustí, S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci. Rep. 8, 17771 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Pinceel, T., Buschke, F., Weckx, M., Brendonck, L. & Vanschoenwinkel, B. Climate change jeopardizes the persistence of freshwater zooplankton by reducing both habitat suitability and demographic resilience. BMC Ecol. 18, 1–9 (2018).

    Article 

    Google Scholar 

  • 11.

    Shin, H. R. & Kneitel, J. M. Warming interacts with inundation timing to influence the species composition of California vernal pool communities. Hydrobiologia 843, 93–105 (2019).

    Article 

    Google Scholar 

  • 12.

    Montrone, A. et al. Climate change impacts on vernal pool hydrology and vegetation in northern California. J. Hydrol. 574, 1003–1013 (2019).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Williams, D. D. The biology of temporary waters. Biol. Tempor. Waters https://doi.org/10.1093/acprof:oso/9780198528128.001.0001 (2007).

    Article 

    Google Scholar 

  • 14.

    Waterkeyn, A., Grillas, P., Vanschoenwinkel, B. & Brendonck, L. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshw. Biol. 53, 1808–1822 (2008).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Lemmens, P. et al. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS One 8, e72538 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Lischeid, G. et al. Natural ponds in an agricultural landscape: External drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica 68, 5–16 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Mancinelli, G., Mali, S. & Belmonte, G. Species richness and taxonomic distinctness of zooplankton in ponds and small lakes from Albania and North Macedonia: The role of bioclimatic factors. Water (Switzerland) 11, 2384 (2019).

    Google Scholar 

  • 18.

    Gołdyn, B., Kowalczewska-Madura, K. & Celewicz-Gołdyn, S. Drought and deluge: Influence of environmental factors on water quality of kettle holes in two subsequent years with different precipitation. Limnologica 54, 14–22 (2015).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Salmaso, N. & Tolotti, M. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia https://doi.org/10.1007/s10750-020-04323-w (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Celewicz, S., Czyż, M. J. & Gołdy, B. Feeding patterns in Eubranchipus grubii (Dybowski 1860) (Branchiopoda: Anostraca) and its potential influence on the phytoplankton communities of vernal pools. J. Limnol. 77, 276–284 (2018).

    Article 

    Google Scholar 

  • 21.

    Rasconi, S., Winter, K. & Kainz, M. J. Temperature increase and fluctuation induce phytoplankton biodiversity loss—Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 7, 2936–2946 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Celewicz-Goldyn, S. & Kuczynska-Kippen, N. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS One 12, e0177317 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Kozak, A., Celewicz-Gołdyn, S. & Kuczyńska-Kippen, N. Cyanobacteria in small water bodies: The effect of habitat and catchment area conditions. Sci. Total Environ. 646, 1578–1587 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Iacarella, J. C., Barrow, J. L., Giani, A., Beisner, B. E. & Gregory-Eaves, I. Shifts in algal dominance in freshwater experimental ponds across differing levels of macrophytes and nutrients. Ecosphere 9, e02086 (2018).

    Article 

    Google Scholar 

  • 25.

    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Richardson, J. et al. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Glob. Change Biol. 25, 3365–3380 (2019).

    ADS 
    Article 

    Google Scholar 

  • 27.

    De Senerpont Domis, L. N., Mooij, W. M. & Huisman, J. Climate-induced shifts in an experimental phytoplankton community: A mechanistic approach. Hydrobiologia 584, 403–413 (2007).

    Article 

    Google Scholar 

  • 28.

    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).

    Article 

    Google Scholar 

  • 31.

    Machado, K. B., Vieira, L. C. G. & Nabout, J. C. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia 830, 115–134 (2019).

    CAS 
    Article 

    Google Scholar 

  • 32.

    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Rasconi, S., Gall, A., Winter, K. & Kainz, M. J. Increasing water temperature triggers dominance of small freshwater plankton. PLoS One 10, e0140449 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Wirth, C., Limberger, R. & Weisse, T. Temperature × light interaction and tolerance of high water temperature in the planktonic freshwater flagellates Cryptomonas (Cryptophyceae) and Dinobryon (Chrysophyceae). J. Phycol. 55, 404–414 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Wang, H. et al. High antioxidant capability interacts with respiration to mediate two Alexandrium species growth exploitation of photoperiods and light intensities. Harmful Algae 82, 26–34 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Fakhri, M., Arifin, N. B., Budianto, B., Yuniarti, A. & Hariati, A. M. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nat. Environ. Pollut. Technol. 14, 563–566 (2015).

    Google Scholar 

  • 37.

    Torzillo, G., Sacchi, A. & Materassi, R. Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour. Technol. 38, 95–100 (1991).

    Article 

    Google Scholar 

  • 38.

    Shatwell, T., Köhler, J. & Nicklisch, A. Temperature and photoperiod interactions with phosphorus-limited growth and competition of two diatoms. PLoS One 9, e102367 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Li, G., Talmy, D. & Campbell, D. A. Diatom growth responses to photoperiod and light are predictable from diel reductant generation. J. Phycol. 53, 95–107 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Reynolds, C. S. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Excellence in Ecology Vol. 77 (Ecology Institute, 1997).

    Google Scholar 

  • 41.

    Elliott, J. A., Jones, I. D. & Thackeray, S. J. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559, 401–411 (2006).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Elliott, J. A. Is the future blue–green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res. 46, 1364–1371 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Hansson, L. A. et al. Food-chain length alters community responses to global change in aquatic systems. Nat. Clim. Change 3, 228–233 (2013).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Burgmer, T. & Hillebrand, H. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120, 922–933 (2011).

    Article 

    Google Scholar 

  • 47.

    Hillebrand, H., Burgmer, T. & Biermann, E. Running to stand still: Temperature effects on species richness, species turnover, and functional community dynamics. Mar. Biol. 159, 2415–2422 (2012).

    Article 

    Google Scholar 

  • 48.

    Lewandowska, A. M. et al. Responses of primary productivity to increased temperature and phytoplankton diversity. J. Sea Res. 72, 87–93 (2012).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 85, 359–364 (2014).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Bergkemper, V., Stadler, P. & Weisse, T. Moderate weather extremes alter phytoplankton diversity—A microcosm study. Freshw. Biol. 63, 1211–1224 (2018).

    CAS 
    Article 

    Google Scholar 

  • 51.

    McMinn, A. & Martin, A. Dark survival in a warming world. Proc. R. Soc. B Biol. Sci. 280, 20122909 (2013).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 1–10 (2019).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).

    Article 

    Google Scholar 

  • 54.

    Reeves, S., McMinn, A. & Martin, A. The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biol. 34, 1019–1032 (2011).

    Article 

    Google Scholar 

  • 55.

    van de Poll, W. H., Abdullah, E., Visser, R. J. W., Fischer, P. & Buma, A. G. J. Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol. Oceanogr. 65, 903–914 (2020).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Poniewozik, M. & Juráň, J. Extremely high diversity of euglenophytes in a small pond in eastern Poland. Plant Ecol. Evol. 151, 18–34 (2018).

    Article 

    Google Scholar 

  • 57.

    Shafik, H. M., Herodek, S., Présing, M. & Vörös, L. Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Wołoszyńska) Seenayya et Subba Raju. Algol. Stud. Hydrobiol. Suppl. 103, 75–93 (2001).

    Google Scholar 

  • 58.

    Tang, E. P. Y. & Vincent, W. F. Effects of daylength and temperature on the growth and photosynthesis of an Arctic cyanobacterium, Schizothrix calcicola (Oscillatoriaceae). Eur. J. Phycol. 35, 263–272 (2000).

    Article 

    Google Scholar 

  • 59.

    Agasild, H., Zingel, P., Tõnno, I., Haberman, J. & Nõges, T. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584, 167–177 (2007).

    Article 

    Google Scholar 

  • 60.

    Gołdyn, R. & Kowalczewska-Madura, K. Interactions between phytoplankton and zooplankton in the hypertrophic Swarzȩdzkie Lake in western Poland. J. Plankton Res. 30, 33–42 (2008).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Tovar-Sanchez, A., Duarte, C. M., Hernández-León, S. & Sañudo-Wilhelmy, S. A. Krill as a central node for iron cycling in the Southern Ocean. Geophys. Res. Lett. 34, L11601 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Hunt, R. J. & Matveev, V. F. The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir: An enclosure study. Limnologica 35, 90–101 (2005).

    Article 

    Google Scholar 

  • 63.

    Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Gołdyn, B., Chudzińska, M., Barałkiewicz, D. & Celewicz-Gołdyn, S. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicol. Environ. Saf. 118, 103–111 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 65.

    IPCC. Climate Change 2007: The Physical Science Basis (Cambridge University Press, 2007).

    Google Scholar 

  • 66.

    Christensen, J. H. & Christensen, O. B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change 81, 7–30 (2007).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Beniston, M. et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Change 81, 71–95 (2007).

    Article 

    Google Scholar 

  • 68.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 69.

    Arbizu, P. M. pairwiseAdonis: Pairwise Multilevel Comparison Using Adonis. R Packag. version 0.0.1. (2017).

  • 70.

    Rink, B. & Raak, C. J. F. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148 (1999).

    Article 

    Google Scholar 

  • 71.

    Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data using CANOCO. Bulletin of the Ecological Society of America Vol. 87 (Cambridge University Press, 2003).

    MATH 
    Book 

    Google Scholar 

  • 72.

    Jongman, R. H. G., Ter Braak, C. J. F. & van Tongeren, O. F. R. Data Analysis in Community and Landscape Ecology. Data Analysis in Community and Landscape Ecology (Cambridge University Press, 1995). https://doi.org/10.1017/cbo9780511525575.

    Book 

    Google Scholar 

  • 73.

    ter Braak, J. F. C. & Šmilauer, P. Canoco Reference Manual and CanoDraw for Windows User’s Guide (Microcomputer Power, 2002).

    Google Scholar 

  • 74.

    R Development Core Team. R: A Language and Environment for Statistical Computing (2020).

  • 75.

    Oksanen, J. et al. vegan: Community Ecology Package. R Packag. version 2.5-7 (2020).


  • Source: Ecology - nature.com

    MIT-designed project achieves major advance toward fusion energy

    Historical land use has long-term effects on microbial community assembly processes in forest soils