Cronk, Q. C. B. & Fuller, J. L. Plant Invaders: The Threat to Natural Ecosystems (Chapman and Hall, 1995).
Tererai, F. & Wood, A. R. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. S. Afr. J. Bot. 95, 152–158 (2014).
Google Scholar
Yu, F., Akin-Fajiye, M., Thapa Magar, K., Ren, J. & Gurevitch, J. A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Divers. Distrib. 22, 1174–1185 (2016).
Google Scholar
Niu, H. B., Liu, W. X., Wan, F. H. & Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294, 73–85 (2007).
Google Scholar
Wang, J. J. Ageratina adenophora (Spreng.). In Biology and Management of Invasive Alien Species in Agriculture and Forestry (eds Wan, F. H. et al.) 651–661 (Science Press, 2005).
Yang, G., Gui, F., Liu, W. & Wan, F. Crofton weed Ageratina adenophora (Sprengel). In Biological Invasions and Its Management in China (eds Wan, F. et al.) 111–129 (Springer, 2017).
Google Scholar
Shrestha, B. B. Invasive alien plant species in Nepal. In Frontiers of Botany (eds Jha, P. K. et al.) 269–284 (Tribhuvan University, 2016).
Alka, C., Adhikari, B. S., Joshi, N. C. & Rawat, G. S. Patterns of invasion by crofton weed (Ageratina adenophora) in Kailash sacred landscape region of western Himalaya (India). Environ. Conserv. J. 20, 9–17 (2019).
Balami, S. & Thapa, L. B. Herbivory damage in native Alnus nepalensis and invasive Ageratina adenophora. Bot. Orient. 11, 7–11 (2017).
Google Scholar
Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant communities and Ageratina adenophora invasion in lower montane vegetation, central Nepal. Int. J. Ecol. Dev. 31, 35–49 (2016).
Thapa, L. B., Thapa, H. & Magar, B. G. Perception, trends and impacts of climate change in Kailali District, Far West Nepal. Int. J. Environ. 4, 62–76 (2015).
Google Scholar
Thapa, N. & Maharjan, M. Invasive alien species: Threats and challenges for biodiversity conservation (A case study of Annapurna Conservation Area, Nepal). In Proc. International Conference on Invasive Alien Species Management, Chitwan, March 25–27, 2014 (eds Thapa, G. J. et al.) 18–22 (National Trust for Nature Conservation, 2014).
Tiwari, S., Adhikari, B., Siwakoti, M. & Subedi, K. An Inventory and Assessment of Invasive Alien Plant Species of Nepal (IUCN Nepal, 2005).
Tripathi, R. S., Yadav, A. S. & Kushwaha, S. P. S. Biology of Chromolaena odorata and Ageratina adenophora. In Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (eds Bhatt, J. R. et al.) 43–56 (CAB International Publishing, 2012).
Fu, D., Wu, X., Huang, N. & Duan, C. Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. J. For. Res. 23, 112–119 (2018).
Google Scholar
Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora 263, 151554 (2020).
Google Scholar
Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Airborne and belowground phytotoxicity of invasive Ageratina adenophora on native species in Nepal. Plant Ecol. 221, 883–892 (2020).
Google Scholar
Wan, F. et al. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci. China Life Sci. 53, 1291–1298 (2010).
Google Scholar
Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant invasiveness and target plant density: High densities of native Schima wallichii seedlings reduce negative effects of invasive Ageratina adenophora. Weed Res. 57, 72–80 (2017).
Google Scholar
Wan, H., Liu, W. & Wan, F. Allelopathic effect of Ageratina adenophora (Spreng.) leaf litter on four herbaceous plants in invaded regions. Chin. J. Eco-Agric. 19, 130–134 (2011).
Google Scholar
Yang, G. Q., Wan, F. H., Guo, J. Y. & Liu, W. X. Cellular and ultrastructural changes in the seedling roots of upland rice (Oryza sativa) under the stress of two allelochemicals from Ageratina adenophora. Weed Biol. Manage. 11, 152–159 (2011).
Google Scholar
Zhang, F., Guo, J., Chen, F., Liu, W. & Wan, F. Identification of volatile compounds released by leaves of the invasive plant croftonweed (Ageratina adenophora, Compositae), and their inhibition of rice seedling growth. Weed Sci. 60, 205–211 (2012).
Google Scholar
Inderjit, E. H. et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324 (2011).
Google Scholar
Yang, G. Q., Qiu, W. R., Jin, Y. N. & Wan, F. H. Potential allelochemicals from root exudates of invasive Ageratina adenophora. Allelopathy J. 32, 233 (2013).
Zhu, X. Z., Guo, J., Shao, H. & Yang, G. Q. Effects of allelochemicals from Ageratina adenophora (Spreng.) on its own autotoxicity. Allelopathy J. 34, 253 (2014).
Latif, S., Chiapusio, G. & Weston, L. A. Allelopathy and the role of allelochemicals in plant defence. Adv. Bot. Res. 82, 19–54 (2017).
Google Scholar
Siggia, S. Importance of functional group determination in organic quantitative analysis. J. Chem. Educ. 27(3), 141 (1950).
Google Scholar
Rogers, E. R., Zalesny, R. S., Hallett, R. A., Headlee, W. L. & Wiese, A. H. Relationships among root–shoot ratio, early growth, and health of hybrid poplar and willow clones grown in different landfill soils. Forests 10, 49 (2019).
Google Scholar
Thornley, J. H. M. A balanced quantitative model for root: Shoot ratios in vegetative plants. Ann. Bot. 36, 431–441 (1972).
Google Scholar
Mašková, T. & Herben, T. Root: Shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 8, 7143–7150 (2018).
Google Scholar
Das, M. B. B., Acharya, B. D., Saquib, M. & Chettri, M. K. Effect of aqueous extract and compost of invasive weed Ageratina adenophora on seed germination and seedling growth of some crops and weeds. J. Biodivers. Conserv. Bioresour. Manage. 4, 11–20 (2018).
Google Scholar
Zhou, Z. Y. et al. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food Chem. 61, 11792–11799 (2013).
Google Scholar
Zhang, M. et al. Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 18, 14096–14104 (2013).
Google Scholar
Dong, L. M. et al. Two new thymol derivatives from the roots of Ageratina adenophora. Molecules 22, 592 (2017).
Google Scholar
Zhao, X. et al. Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J. Agric. Food Chem. 57, 478–482 (2009).
Google Scholar
Kollmann, J., Brink-Jensen, K., Frandsen, S. I. & Hansen, M. K. Uprooting and burial of invasive alien plants: A new tool in coastal restoration? Restor. Ecol. 19(3), 371–378 (2011).
Google Scholar
Jiao, Y. et al. In situ aerobic composting eliminates the toxicity of Ageratina adenophora to maize and converts it into a plant-and soil-friendly organic fertilizer. J. Hazard. Mater. 410, 124554 (2021).
Google Scholar
Chen, X. et al. (2015) Impacts of four invasive Asteraceae on soil physico-chemical properties and AM fungi community. Am. J. Plant Sci. 6, 2734 (2009).
Google Scholar
Yu, F. K. et al. Impacts of Ageratina adenophora invasion on soil physical–chemical properties of Eucalyptus plantation and implications for constructing agro-forest ecosystem. Ecol. Eng. 64, 130–135 (2014).
Google Scholar
Nirola, R. & Jha, P. K. Phytodiversity and soil study of Shiwalik Hills of Ilam, Nepal: An ecological perspective. Ecoprint 18, 77–83 (2011).
Google Scholar
Lu, J. S., Shen, T., Guo, Z., Shen, X. W. & Zheng, S. Z. The chemical constituents of Elsholtzia blanda. Acta Bot. Sin. 43, 545–550 (2001).
Google Scholar
Singh, T. T., Sharma, H. M., Devi, A. R. & Sharma, H. R. Plants used in the treatment of piles by the scheduled caste community of Andro village in Imphal East District, Manipur (India). J. Plant Sci. 2, 113–119 (2014).
Malla, B. & Chhetri, R. B. Indigenous knowledge on medicinal non-timber forest products (NTFP) in Parbat district of Nepal. Indo. Glob. J. Pharm. Sci. 2, 213–225 (2012).
Climate-data.org. Chitlang Climate (Nepal) (2021). https://en.climate-data.org/asia/nepal/central-development-region/chitlang-1061755/ (Accessed 2 April 2021).
Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).
Google Scholar
Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis, Part 2 (eds Page, A. L. et al.) 595–624 (American Society of Agronomy, 1982).
Olsen, S. R., Cole, C. V., Watanable, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939 (U.S. Govt Printing Office, 1954).
Toth, S. J. & Prince, A. L. Estimation of cation-exchange capacity and exchangeable Ca, K, and Na contents of soils by flame photometer techniques. Soil Sci. 67(6), 439–446 (1949).
Google Scholar
Bajracharya, D. Experiments in Plant Physiology. 51-52 (Narosa Publishing House, New Delhi, India, 1999).
Source: Ecology - nature.com