in

Phytotoxic effects of invasive Ageratina adenophora on two native subtropical shrubs in Nepal

  • 1.

    Cronk, Q. C. B. & Fuller, J. L. Plant Invaders: The Threat to Natural Ecosystems (Chapman and Hall, 1995).

    Google Scholar 

  • 2.

    Tererai, F. & Wood, A. R. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. S. Afr. J. Bot. 95, 152–158 (2014).

    Article 

    Google Scholar 

  • 3.

    Yu, F., Akin-Fajiye, M., Thapa Magar, K., Ren, J. & Gurevitch, J. A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Divers. Distrib. 22, 1174–1185 (2016).

    Article 

    Google Scholar 

  • 4.

    Niu, H. B., Liu, W. X., Wan, F. H. & Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294, 73–85 (2007).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Wang, J. J. Ageratina adenophora (Spreng.). In Biology and Management of Invasive Alien Species in Agriculture and Forestry (eds Wan, F. H. et al.) 651–661 (Science Press, 2005).

    Google Scholar 

  • 6.

    Yang, G., Gui, F., Liu, W. & Wan, F. Crofton weed Ageratina adenophora (Sprengel). In Biological Invasions and Its Management in China (eds Wan, F. et al.) 111–129 (Springer, 2017).

    Chapter 

    Google Scholar 

  • 7.

    Shrestha, B. B. Invasive alien plant species in Nepal. In Frontiers of Botany (eds Jha, P. K. et al.) 269–284 (Tribhuvan University, 2016).

    Google Scholar 

  • 8.

    Alka, C., Adhikari, B. S., Joshi, N. C. & Rawat, G. S. Patterns of invasion by crofton weed (Ageratina adenophora) in Kailash sacred landscape region of western Himalaya (India). Environ. Conserv. J. 20, 9–17 (2019).

    Google Scholar 

  • 9.

    Balami, S. & Thapa, L. B. Herbivory damage in native Alnus nepalensis and invasive Ageratina adenophora. Bot. Orient. 11, 7–11 (2017).

    Article 

    Google Scholar 

  • 10.

    Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant communities and Ageratina adenophora invasion in lower montane vegetation, central Nepal. Int. J. Ecol. Dev. 31, 35–49 (2016).

    Google Scholar 

  • 11.

    Thapa, L. B., Thapa, H. & Magar, B. G. Perception, trends and impacts of climate change in Kailali District, Far West Nepal. Int. J. Environ. 4, 62–76 (2015).

    Article 

    Google Scholar 

  • 12.

    Thapa, N. & Maharjan, M. Invasive alien species: Threats and challenges for biodiversity conservation (A case study of Annapurna Conservation Area, Nepal). In Proc. International Conference on Invasive Alien Species Management, Chitwan, March 25–27, 2014 (eds Thapa, G. J. et al.) 18–22 (National Trust for Nature Conservation, 2014).

    Google Scholar 

  • 13.

    Tiwari, S., Adhikari, B., Siwakoti, M. & Subedi, K. An Inventory and Assessment of Invasive Alien Plant Species of Nepal (IUCN Nepal, 2005).

    Google Scholar 

  • 14.

    Tripathi, R. S., Yadav, A. S. & Kushwaha, S. P. S. Biology of Chromolaena odorata and Ageratina adenophora. In Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (eds Bhatt, J. R. et al.) 43–56 (CAB International Publishing, 2012).

    Google Scholar 

  • 15.

    Fu, D., Wu, X., Huang, N. & Duan, C. Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. J. For. Res. 23, 112–119 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora 263, 151554 (2020).

    Article 

    Google Scholar 

  • 17.

    Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Airborne and belowground phytotoxicity of invasive Ageratina adenophora on native species in Nepal. Plant Ecol. 221, 883–892 (2020).

    Article 

    Google Scholar 

  • 18.

    Wan, F. et al. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci. China Life Sci. 53, 1291–1298 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant invasiveness and target plant density: High densities of native Schima wallichii seedlings reduce negative effects of invasive Ageratina adenophora. Weed Res. 57, 72–80 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Wan, H., Liu, W. & Wan, F. Allelopathic effect of Ageratina adenophora (Spreng.) leaf litter on four herbaceous plants in invaded regions. Chin. J. Eco-Agric. 19, 130–134 (2011).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Yang, G. Q., Wan, F. H., Guo, J. Y. & Liu, W. X. Cellular and ultrastructural changes in the seedling roots of upland rice (Oryza sativa) under the stress of two allelochemicals from Ageratina adenophora. Weed Biol. Manage. 11, 152–159 (2011).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Zhang, F., Guo, J., Chen, F., Liu, W. & Wan, F. Identification of volatile compounds released by leaves of the invasive plant croftonweed (Ageratina adenophora, Compositae), and their inhibition of rice seedling growth. Weed Sci. 60, 205–211 (2012).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Inderjit, E. H. et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Yang, G. Q., Qiu, W. R., Jin, Y. N. & Wan, F. H. Potential allelochemicals from root exudates of invasive Ageratina adenophora. Allelopathy J. 32, 233 (2013).

    Google Scholar 

  • 25.

    Zhu, X. Z., Guo, J., Shao, H. & Yang, G. Q. Effects of allelochemicals from Ageratina adenophora (Spreng.) on its own autotoxicity. Allelopathy J. 34, 253 (2014).

    Google Scholar 

  • 26.

    Latif, S., Chiapusio, G. & Weston, L. A. Allelopathy and the role of allelochemicals in plant defence. Adv. Bot. Res. 82, 19–54 (2017).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Siggia, S. Importance of functional group determination in organic quantitative analysis. J. Chem. Educ. 27(3), 141 (1950).

    Article 

    Google Scholar 

  • 28.

    Rogers, E. R., Zalesny, R. S., Hallett, R. A., Headlee, W. L. & Wiese, A. H. Relationships among root–shoot ratio, early growth, and health of hybrid poplar and willow clones grown in different landfill soils. Forests 10, 49 (2019).

    Article 

    Google Scholar 

  • 29.

    Thornley, J. H. M. A balanced quantitative model for root: Shoot ratios in vegetative plants. Ann. Bot. 36, 431–441 (1972).

    Article 

    Google Scholar 

  • 30.

    Mašková, T. & Herben, T. Root: Shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 8, 7143–7150 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Das, M. B. B., Acharya, B. D., Saquib, M. & Chettri, M. K. Effect of aqueous extract and compost of invasive weed Ageratina adenophora on seed germination and seedling growth of some crops and weeds. J. Biodivers. Conserv. Bioresour. Manage. 4, 11–20 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Zhou, Z. Y. et al. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food Chem. 61, 11792–11799 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Zhang, M. et al. Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 18, 14096–14104 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Dong, L. M. et al. Two new thymol derivatives from the roots of Ageratina adenophora. Molecules 22, 592 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Zhao, X. et al. Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J. Agric. Food Chem. 57, 478–482 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Kollmann, J., Brink-Jensen, K., Frandsen, S. I. & Hansen, M. K. Uprooting and burial of invasive alien plants: A new tool in coastal restoration? Restor. Ecol. 19(3), 371–378 (2011).

    Article 

    Google Scholar 

  • 37.

    Jiao, Y. et al. In situ aerobic composting eliminates the toxicity of Ageratina adenophora to maize and converts it into a plant-and soil-friendly organic fertilizer. J. Hazard. Mater. 410, 124554 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Chen, X. et al. (2015) Impacts of four invasive Asteraceae on soil physico-chemical properties and AM fungi community. Am. J. Plant Sci. 6, 2734 (2009).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Yu, F. K. et al. Impacts of Ageratina adenophora invasion on soil physical–chemical properties of Eucalyptus plantation and implications for constructing agro-forest ecosystem. Ecol. Eng. 64, 130–135 (2014).

    Article 

    Google Scholar 

  • 40.

    Nirola, R. & Jha, P. K. Phytodiversity and soil study of Shiwalik Hills of Ilam, Nepal: An ecological perspective. Ecoprint 18, 77–83 (2011).

    Article 

    Google Scholar 

  • 41.

    Lu, J. S., Shen, T., Guo, Z., Shen, X. W. & Zheng, S. Z. The chemical constituents of Elsholtzia blanda. Acta Bot. Sin. 43, 545–550 (2001).

    CAS 

    Google Scholar 

  • 42.

    Singh, T. T., Sharma, H. M., Devi, A. R. & Sharma, H. R. Plants used in the treatment of piles by the scheduled caste community of Andro village in Imphal East District, Manipur (India). J. Plant Sci. 2, 113–119 (2014).

    Google Scholar 

  • 43.

    Malla, B. & Chhetri, R. B. Indigenous knowledge on medicinal non-timber forest products (NTFP) in Parbat district of Nepal. Indo. Glob. J. Pharm. Sci. 2, 213–225 (2012).

    Google Scholar 

  • 44.

    Climate-data.org. Chitlang Climate (Nepal) (2021). https://en.climate-data.org/asia/nepal/central-development-region/chitlang-1061755/ (Accessed 2 April 2021).

  • 45.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis, Part 2 (eds Page, A. L. et al.) 595–624 (American Society of Agronomy, 1982).

    Google Scholar 

  • 47.

    Olsen, S. R., Cole, C. V., Watanable, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939 (U.S. Govt Printing Office, 1954).

    Google Scholar 

  • 48.

    Toth, S. J. & Prince, A. L. Estimation of cation-exchange capacity and exchangeable Ca, K, and Na contents of soils by flame photometer techniques. Soil Sci. 67(6), 439–446 (1949).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Bajracharya, D. Experiments in Plant Physiology. 51-52 (Narosa Publishing House, New Delhi, India, 1999).


  • Source: Ecology - nature.com

    Beyond coronavirus: the virus discoveries transforming biology

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans