in

Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene

[adace-ad id="91168"]
  • 1.

    Kalnay E, Cai M. Impact of urbanization and land-use change on climate. Nature. 2003;423:528–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Archer SDJ, Pointing SB. Anthropogenic impact on the atmospheric microbiome. Nat Microbiol. 2020;5:229–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Powers RP, Jetz W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat Clim Change. 2019;9:323–9.

    Article 

    Google Scholar 

  • 4.

    Sandifer PA, Sutton-Grier AE, Ward BP. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst Serv. 2015;12:1–15.

    Article 

    Google Scholar 

  • 5.

    Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol. 2020;18:35–46.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    CAS 
    Article 

    Google Scholar 

  • 7.

    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Sapp M, Ploch S, Fiore-Donno AM, Bonkowski M, Rose LE. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ Microbiol. 2018;20:30–43.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome. 2016;4:27.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Andrews JH, Harris RF. The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol. 2000;38:145–80.

    Article 

    Google Scholar 

  • 12.

    Lugtenberg B, Kamilova F. Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Davison J. Plant beneficial bacteria. Bio/Technol. 1988;6:282–6.

    CAS 

    Google Scholar 

  • 15.

    Schauer S, Kutschera U. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav. 2011;6:510–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Innerebner G, Knief C, Vorholt JA. Protection of arabidopsis thaliana against leaf-pathogenic pseudomonas syringae by sphingomonas strains in a controlled model system. Appl Environ Microbiol. 2011;77:3202–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546:145–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Koskella B, Meaden S, Crowther WJ, Leimu R, Metcalf CJE. A signature of tree health? Shifts in the microbiome and the ecological drivers of horse chestnut bleeding canker disease. N Phytol. 2017;215:737–46.

    CAS 
    Article 

    Google Scholar 

  • 19.

    Isbell F, Tilman D, Polasky S, Loreau M. The biodiversity-dependent ecosystem service debt. Ecol Lett. 2015;18:119–34.

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Barnosky A, Matzke N, Tomiya S, Wogan G, Swartz B, Quental T, et al. Has the earth’s sixth mass extinction already arrived? Nat Nat. 2011;471:51–7.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Pascual U, Balvanera P, Díaz S, Pataki G, Roth E, Stenseke M, et al. Valuing nature’s contributions to people: the IPBES approach. Curr Opin Environ Sustain. 2017;26–27:7–16.

    Article 

    Google Scholar 

  • 22.

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environ Int. 2015;76:78–97.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Jumpponen A, Jones KL. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. N Phytol. 2010;186:496–513.

    CAS 
    Article 

    Google Scholar 

  • 25.

    Imperato V, Kowalkowski L, Portillo-Estrada M, Gawronski SW, Vangronsveld J, Thijs S. Characterisation of the Carpinus betulus L. Phyllomicrobiome in urban and forest areas. Front Microbiol. 2019;10:1110.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Bowers RM, McLetchie S, Knight R, Fierer N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 2011;5:601–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Lymperopoulou DS, Adams RI, Lindow SE. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl Environ Microbiol. 2016;82:3822–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    De Kempeneer L, Sercu B, Vanbrabant W, Van Langenhove H, Verstraete W. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl Microbiol Biotechnol. 2004;64:284–8.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Hanski I, Hertzen Lvon, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci. 2012;109:8334–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Smets W, Wuyts K, Oerlemans E, Wuyts S, Denys S, Samson R, et al. Impact of urban land use on the bacterial phyllosphere of ivy (Hedera sp.). Atmos Environ. 2016;147:376–83.

    CAS 
    Article 

    Google Scholar 

  • 31.

    Laforest-Lapointe I, Messier C, Kembel SW. Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity. mSystems. 2017;2:e00087–17.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Espenshade J, Thijs S, Gawronski S, Bové H, Weyens N, Vangronsveld J. Influence of urbanization on epiphytic bacterial communities of the platanus × hispanica tree leaves in a Biennial Study. Front Microbiol. 2019;10:675.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Wuyts K, Smets W, Lebeer S, Samson R. Green infrastructure and atmospheric pollution shape diversity and composition of phyllosphere bacterial communities in an urban landscape. FEMS Microbiol Ecol 2020;96:fiz173.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Zhao D, Liu G, Wang X, Daraz U, Sun Q. Abundance of human pathogen genes in the phyllosphere of four landscape plants. J Environ Manag. 2020;255:109933.

    CAS 
    Article 

    Google Scholar 

  • 35.

    Gandolfi I, Canedoli C, Imperato V, Tagliaferri I, Gkorezis P, Vangronsveld J, et al. Diversity and hydrocarbon-degrading potential of epiphytic microbial communities on Platanus x acerifolia leaves in an urban area. Environ Pollut. 2017;220:650–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J. Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol. 2009;20:248–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Afzal M, Khan QM, Sessitsch A. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 2014;117:232–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol. 2001;67:2469–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol. 2004;22:583–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Sandhu A, Halverson LJ, Beattie GA. Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol. 2007;9:383–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, et al. The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci. 2015;16:25576–604.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, et al. Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci. 2011;108:203–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, et al. Alien species in a warmer world: risks and opportunities. Trends Ecol Evol. 2009;24:686–93.

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Blüthgen N, Menzel F, Blüthgen N. Measuring specialization in species interaction networks. BMC Ecol. 2006;6:9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Cobian GM, Egan CP, Amend AS. Plant–microbe specificity varies as a function of elevation. ISME J. 2019;13:2778–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Bálint M, Bartha L, O’Hara RB, Olson MS, Otte J, Pfenninger M, et al. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol Ecol. 2015;24:235–48.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Vacher C, Cordier T, Vallance J. Phyllosphere fungal communities differentiate more thoroughly than bacterial communities along an elevation gradient. Micro Ecol. 2016;72:1–3.

    Article 

    Google Scholar 

  • 48.

    Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, et al. Positive interactions among alpine plants increase with stress. Nature. 2002;417:844–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Bever JD. Feeback between plants and their soil communities in an old field. Community Ecol. 1994;75:1965–77.

    Article 

    Google Scholar 

  • 50.

    Bever JD. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. N Phytol. 2003;157:465–73.

    Article 

    Google Scholar 

  • 51.

    Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature. 2002;417:67–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Reinhart KO, Callaway RM. Soil biota and invasive plants. N Phytol. 2006;170:445–57.

    Article 

    Google Scholar 

  • 53.

    Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Brown CD, Vellend M. Non-climatic constraints on upper elevational plant range expansion under climate change. Proc R Soc B Biol Sci. 2014;281:20141779.

    Article 

    Google Scholar 

  • 55.

    Carteron A, Parasquive V, Blanchard F, Guilbeault‐Mayers X, Turner BL, Vellend M, et al. Soil abiotic and biotic properties constrain the establishment of a dominant temperate tree into boreal forests. J Ecol. 2020;108:931–44.

    Article 

    Google Scholar 

  • 56.

    Williamson M. Biological invasions. 1996. Springer Netherlands.

  • 57.

    Mitchell CE, Power AG. Release of invasive plants from fungal and viral pathogens. Nature. 2003;421:625–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Ramirez KS, Snoek LB, Koorem K, Geisen S, Bloem LJ, ten Hooven F, et al. Range-expansion effects on the belowground plant microbiome. Nat Ecol Evol. 2019;3:604–11.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Diez JM, Dickie I, Edwards G, Hulme PE, Sullivan JJ, Duncan RP. Negative soil feedbacks accumulate over time for non-native plant species. Ecol Lett. 2010;13:803–9.

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Lenssen NJL, Schmidt GA, Hansen JE, Menne MJ, Persin A, Ruedy R, et al. Improvements in the GISTEMP uncertainty model. J Geophys Res Atmos. 2019;124:6307–26.

    Article 

    Google Scholar 

  • 61.

    O’brien RD, Lindow SE. Effect of plant species and environmental conditions on ice nucleation activity of pseudomonas syringae on leaves. Appl Environ Microbiol. 1988;54:2281–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Klinkert B, Narberhaus F. Microbial thermosensors. Cell Mol Life Sci. 2009;66:2661–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Velásquez AC, Castroverde CDM, He SY. Plant-pathogen warfare under changing climate conditions. Curr Biol CB. 2018;28:R619–R634.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Compant S, van der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol. 2010;73:197–214.

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Cheng YT, Zhang L, He SY. Plant-microbe interactions facing environmental challenge. Cell Host Microbe. 2019;26:183–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Guerra CA, Delgado‐Baquerizo M, Duarte E, Marigliano O, Görgen C, Maestre FT, et al. Global projections of the soil microbiome in the Anthropocene. Glob Ecol Biogeogr. 2021;30:987–99.

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Frindte K, Pape R, Werner K, Löffler J, Knief C. Temperature and soil moisture control microbial community composition in an arctic–alpine ecosystem along elevational and micro-topographic gradients. ISME J. 2019;13:2031–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau M-L, Vacher C. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. N Phytol. 2012;196:510–9.

    Article 

    Google Scholar 

  • 69.

    Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol. 2012;21:4160–70.

    PubMed 
    Article 

    Google Scholar 

  • 70.

    Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Micro Ecol. 2018;76:668–79.

    Article 

    Google Scholar 

  • 71.

    Peñuelas J, Rico L, Ogaya R, Jump AS, Terradas J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol Stuttg Ger. 2012;14:565–75.

    Article 

    Google Scholar 

  • 72.

    Rico L, Ogaya R, Terradas J, Peñuelas J. Community structures of N2 -fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biol Stuttg Ger. 2014;16:586–93.

    CAS 
    Article 

    Google Scholar 

  • 73.

    Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:1–10.

    Article 
    CAS 

    Google Scholar 

  • 74.

    Redford AJ, Fierer N. Bacterial Succession on the Leaf Surface: A Novel System for Studying Successional Dynamics. Micro Ecol. 2009;58:189–98.

    Article 

    Google Scholar 

  • 75.

    Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLOS Biol. 2018;16:e2003862.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci. 2017;114:9326–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLOS ONE. 2013;8:e66428.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Angel R, Soares MIM, Ungar ED, Gillor O. Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J. 2010;4:553–63.

    PubMed 
    Article 

    Google Scholar 

  • 80.

    Kaisermann A, Vries FTde, Griffiths RI, Bardgett RD. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. N Phytol. 2017;215:1413–24.

    CAS 
    Article 

    Google Scholar 

  • 81.

    Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB. Fungal community responses to precipitation. Glob Change Biol. 2011;17:1637–45.

    Article 

    Google Scholar 

  • 82.

    Lau JA, Lennon JT. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci. 2012;109:14058–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming and drought on grassland microbial communities. ISME J. 2011;5:1692–700.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:333.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Li F, Deng J, Nzabanita C, Li Y, Duan T. Growth and physiological responses of perennial ryegrass to an AMF and an Epichloë endophyte under different soil water contents. Symbiosis. 2019;79:151–61.

    CAS 
    Article 

    Google Scholar 

  • 86.

    Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL, Ma J, et al. Functional relationships between aboveground and belowground spinach (Spinacia oleracea L., cv. Racoon) microbiomes impacted by salinity and drought. Sci Total Environ. 2020;717:137207.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, et al. The role of ecological theory in microbial ecology. Nat Rev Microbiol. 2007;5:384–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 88.

    Shoemaker WR, Locey KJ, Lennon JT. A macroecological theory of microbial biodiversity. Nat Ecol Evol. 2017;1:0107.

    Article 

    Google Scholar 

  • 89.

    Ratzke C, Denk J, Gore J. Ecological suicide in microbes. Nat Ecol Evol. 2018;2:867–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJM, Herrmann M, et al. Macroecology to unite all life, large and small. Trends Ecol Evol. 2018;33:731–44.

    PubMed 
    Article 

    Google Scholar 

  • 91.

    Grilli J. Macroecological laws describe variation and diversity in microbial communities. Nat Commun. 2020;11:4743.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 2010;4:719–28.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves: Biogeography of phyllosphere bacterial communities. Environ Microbiol. 2010;12:2885–93.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Remus-Emsermann MNP, Tecon R, Kowalchuk GA, Leveau JHJ. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 2012;6:756–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci. 2014;111:13715–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio. 2014;5:e00682–13.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 97.

    Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol Evol. 2019;3:1445–54.

    Google Scholar 

  • 99.

    Lajoie G, Maglione R, Kembel SW. Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest. Microbiome. 2020;8:70.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt JA. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 2020;14:245–58.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 101.

    Lajoie G, Kembel SW. Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal gradient. Ecol Monogr. 2021;91:e01443.

    Article 

    Google Scholar 

  • 102.

    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.

    Article 
    PubMed 

    Google Scholar 

  • 103.

    Bernhardt ES, Rosi EJ, Gessner MO. Synthetic chemicals as agents of global change. Front Ecol Environ. 2017;15:84–90.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Researchers design sensors to rapidly detect plant hormones

    Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome