in

Plant-soil feedbacks help explain biodiversity-productivity relationships

  • 1.

    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Van Ruijven, J. & Berendse, F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Jing, J., Bezemer, T. M. & van der Putten, W. H. Complementarity and selection effects in early and mid-successional plant communities are differentially affected by plant-soil feedback. J. Ecol. 103, 641–647 (2015).

    Article 

    Google Scholar 

  • 6.

    Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).

    Article 

    Google Scholar 

  • 8.

    Hector, A., Bazeley-White, E., Loreau, M., Otway, S. & Schmid, B. Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecol. Lett. 5, 502–511 (2002).

    Article 

    Google Scholar 

  • 9.

    Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Kulmatiski, A., Beard, K. H. & Heavilin, J. Plant-soil feedbacks provide an additional explanation for diversity-productivity relationships. Proc. R. Soc. B Biol. Sci. 279, 3020–3026 (2012).

    Article 

    Google Scholar 

  • 11.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, 6480 (2020).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Wang, G. et al. Soil microbiome mediates positive plant diversity‐productivity relationships in late successional grassland species. Ecol. Lett. 22, 13273 (2019).

    Article 

    Google Scholar 

  • 15.

    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Bauer, J. T., Koziol, L. & Bever, J. D. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia 192, 735–744 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Bever, J. D. Feeback between plants and their soil communities in an old field community. Ecology 75, 1965–1977 (1994).

    Article 

    Google Scholar 

  • 19.

    Hendriks, M. et al. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding. J. Ecol. 101, 287–297 (2013).

    Article 

    Google Scholar 

  • 20.

    Zuppinger-Dingley, D. L., Flynn, D. F. B., De Deyn, G. B., Petermann, J. S. & Schmid, B. Plant selection and soil legacy enhance long-term biodiversity effects. Ecology 97, 15–0599.1 (2015).

    Google Scholar 

  • 21.

    Mommer, L. et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. N. Phytol. 218, 542–553 (2018).

    Article 

    Google Scholar 

  • 22.

    Guerrero‐Ramírez, N. R., Reich, P. B., Wagg, C., Ciobanu, M. & Eisenhauer, N. Diversity‐dependent plant–soil feedbacks underlie long‐term plant diversity effects on primary productivity. Ecosphere 10, e02704 (2019).

    Article 

    Google Scholar 

  • 23.

    van Ruijven, J., Ampt, E., Francioli, D. & Mommer, L. Do soil-borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J. Ecol. 108, 1810–1821 (2020).

    Article 

    Google Scholar 

  • 24.

    Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92, 296–303 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Lekberg, Y. et al. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Cowles, J. Mechanisms of Coexistence: Implications for Biodiversity-Ecosystem Functioning Relationships in a Changing World. Dissertation, The University of Minnesota (2015).

  • 27.

    Forero, L. E., Grenzer, J., Heinze, J., Schittko, C. & Kulmatiski, A. Greenhouse- and field-measured plant-soil feedbacks are not correlated. Front. Environ. Sci. 7, 184 (2019).

    Article 

    Google Scholar 

  • 28.

    Kulmatiski, A. & Kardol, P. in Getting Plant—Soil Feedbacks out of the Greenhouse: Experimental and Conceptual Approaches 449–472 (Springer, 2008).

  • 29.

    Pernilla Brinkman, E., Van der Putten, W. H., Bakker, E. J. & Verhoeven, K. J. F. Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 98, 1063–1073 (2010).

    Article 

    Google Scholar 

  • 30.

    van der Putten, W. H. et al. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).

    Article 

    Google Scholar 

  • 31.

    Rinella, M. J. & Reinhart, K. O. Toward more robust plant-soil feedback research. Ecology 99, 550–556 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Crawford, K. M. et al. When and where plant‐soil feedback may promote plant coexistence: a meta‐analysis. Ecol. Lett. 22, 13278 (2019).

    Article 

    Google Scholar 

  • 33.

    Clark, A. T. et al. How to estimate complementarity and selection effects from an incomplete sample of species. Methods Ecol. Evol. 10, 2141–2152 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Anacker, B. L., Klironomos, J. N., Maherali, H., Reinhart, K. O. & Strauss, S. Y. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol. Lett. 17, 1613–1621 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Mehrabi, Z. & Tuck, S. L. Relatedness is a poor predictor of negative plant–soil feedbacks. N. Phytol. 205, 1071–1075 (2015).

    Article 

    Google Scholar 

  • 36.

    Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11, 980–992 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Beals, K. K. et al. Predicting plant-soil feedback in the field: meta-analysis reveals that competition and environmental stress differentially influence psf. Front. Ecol. Evol. 8, 191 (2020).

    Article 

    Google Scholar 

  • 38.

    Kos, M., Tuijl, M. A. B., de Roo, J., Mulder, P. P. J. & Bezemer, T. M. Species-specific plant-soil feedback effects on above-ground plant-insect interactions. J. Ecol. 103, 904–914 (2015).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Bukowski, A. R. & Petermann, J. S. Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana. Ecol. Evol. 4, 2533–2545 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Fornara, D. A. & Tilman, D. Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90, 408–418 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Laughlin, D. C. et al. The hierarchy of predictability in ecological restoration: are vegetation structure and functional diversity more predictable than community composition? J. Appl. Ecol. 54, 1058–1069 (2017).

    Article 

    Google Scholar 

  • 43.

    Metcalfe, H., Milne, A. E., Deledalle, F. & Storkey, J. Using functional traits to model annual plant community dynamics. Ecology 101, e03167 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Moulin, T., Perasso, A., Calanca, P. & Gillet, F. DynaGraM: a process-based model to simulate multi-species plant community dynamics in managed grasslands. Ecol. Modell. 439, 109345 (2021).

    Article 

    Google Scholar 

  • 45.

    Putten, W. H., Bradford, M. A., Pernilla Brinkman, E., Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).

    Article 

    Google Scholar 

  • 46.

    Eisenhauer, N., Reich, P. B. & Scheu, S. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl. Ecol. 13, 571–578 (2012).

    Article 

    Google Scholar 

  • 47.

    Hawkes, C. V., Kivlin, S. N., Du, J. & Eviner, V. T. The temporal development and additivity of plant-soil feedback in perennial grasses. Plant Soil 369, 141–150 (2013).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Latz, E., Eisenhauer, N., Rall, B. C., Scheu, S. & Jousset, A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Sci. Rep. 6, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Chung, Y. A. & Rudgers, J. A. Plant–soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses. Proc. R. Soc. B Biol. Sci. 283 (2016).

  • 50.

    Mahaut, L., Fort, F., Violle, C. & Freschet, G. T. Multiple facets of diversity effects on plant productivity: species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 34, 287–298 (2020).

    Article 

    Google Scholar 

  • 51.

    Barry, K. E. et al. Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology 101, 2905 (2020).

    Article 

    Google Scholar 

  • 52.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar 

  • 53.

    Pillai, P. & Gouhier, T. C. Not even wrong: the spurious measurement of biodiversity’s effects on ecosystem functioning. Ecology 100, e02645 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).

    Article 

    Google Scholar 

  • 55.

    Fargione, J. et al. From selection to complementarity: Shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B Biol. Sci. 274, 871–876 (2007).

    Article 

    Google Scholar 

  • 56.

    Helander, M. et al. Decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 642, 285–291 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4, e5695 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Kulmatiski, A., Heavilin, J. & Beard, K. H. Testing predictions of a three-species plant-soil feedback model. J. Ecol. 99, 542–550 (2011).

    Google Scholar 

  • 60.

    Kulmatiski, A., Beard, K. H., Grenzer, J., Forero, L. & Heavilin, J. Using plant-soil feedbacks to predict plant biomass in diverse communities. Ecology 97, 2064–2073 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    From NYC zookeeper to aspiring architect

    3Q: Why “nuclear batteries” offer a new approach to carbon-free energy