in

Pollination success increases with plant diversity in high-Andean communities

  • 1.

    Rabosky, D. L. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013).

    Google Scholar 

  • 2.

    Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).

    Google Scholar 

  • 4.

    Verdú, M., Jordano, P. & Valiente-Banuet, A. The phylogenetic structure of plant facilitation networks changes with competition. J. Ecol. 98, 1454–1461 (2010).

    Google Scholar 

  • 5.

    Gavini, S. S., Ezcurra, C. & Aizen, M. A. Plant–plant interactions promote alpine diversification. Evol. Ecol. 33, 195–209 (2019).

    Google Scholar 

  • 6.

    Eriksson, O. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol. Rev. 91(1), 168–186 (2016).

    PubMed 

    Google Scholar 

  • 7.

    Tur, C., Sáez, A., Traveset, A. & Aizen, M. A. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: Evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19, 576–586 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Braun, J. & Lortie, C. J. Finding the bees knees: A conceptual framework and systematic review of the mechanisms of pollinator-mediated facilitation. Perspect. Plant Ecol. Evol. Syst. 36, 33–40 (2019).

    Google Scholar 

  • 9.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).

    Google Scholar 

  • 10.

    Waser, N. M. & Ollerton, J. Plant-Pollinator Interactions: From Specialization to Generalization (University of Chicago Press, 2006).

    Google Scholar 

  • 11.

    Biella, P. et al. Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Sci. Rep. 9, 7376 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Arceo-Gómez, G. et al. Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide. Sci. Rep. 9(1), 8086 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Morales, C. L. & Traveset, A. Interspecific pollen transfer: Magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).

    CAS 

    Google Scholar 

  • 14.

    Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M. & Karron, J. D. New frontiers in competition for pollination. Ann. Bot. 103, 1403–1413 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Moeller, D. A. Facilitative interactions among plants via shared pollinators. Ecology 85, 3289–3301 (2004).

    Google Scholar 

  • 16.

    Ghazoul, J. Floral diversity and the facilitation of pollination. J. Ecol. 94, 295–304 (2006).

    Google Scholar 

  • 17.

    Muñoz, A. A. & Cavieres, L. A. The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J. Ecol. 96, 459–467 (2008).

    Google Scholar 

  • 18.

    Hegland, S. J., Grytnes, J. A. & Totland, O. The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecol. Res. 24, 929–936 (2009).

    Google Scholar 

  • 19.

    Ashman, T. L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100(6), 1061–1070 (2013).

    PubMed 

    Google Scholar 

  • 20.

    Fang, Q. & Huang, S. Q. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176–1185 (2013).

    PubMed 

    Google Scholar 

  • 21.

    Arceo-Gómez, G. et al. Patterns of among- and within-species variation in heterospecific pollen receipt: The importance of ecological generalization. Am. J. Bot. 103, 396–407 (2016).

    PubMed 

    Google Scholar 

  • 22.

    Fang, Q., Gao, J., Armbruster, W. S. & Huang, S. Q. Multi-year stigmatic pollen-load sampling reveals temporal stability in interspecific pollination of flowers in a subalpine meadow. Oikos 128, 1739–1747 (2019).

    Google Scholar 

  • 23.

    Bartomeus, I., Bosch, J. & Vila, M. High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community. Ann. Bot. 102, 417–424 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Lázaro, A., Jakobsson, A. & Totland, Ø. How do pollinator visitation rate and seed set relate to species’ floral traits and community context?. Oecologia 173(3), 881–893 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • 25.

    Matsumoto, T., Takakura, K. I. & Nishida, T. Alien pollen grains interfere with the reproductive success of native congener. Biol. Invasions 12, 1617–1626 (2010).

    Google Scholar 

  • 26.

    Flanagan, R. J., Mitchell, R. J. & Karron, J. D. Effects of multiple competitors for pollination on bumblebee foraging patterns and Mimulus ringens reproductive success. Oikos 120(2), 200–207 (2011).

    Google Scholar 

  • 27.

    Arceo-Gómez, G. & Ashman, T. L. Heterospecific pollen deposition: Does diversity alter the consequences?. New Phytol. 192(3), 738–746 (2011).

    PubMed 

    Google Scholar 

  • 28.

    Arceo-Gómez, G., Kaczorowski, R. L., Patel, C. & Ashman, T. L. Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia 189, 1041–1047 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • 29.

    Montgomery, B. R. Pollination of Sisyrinchium campestre (Iridaceae) in prairies invaded by the introduced plant Euphorbia ésula (Euphorbiaceae). Am. Midl. Nat. 162, 239–252 (2009).

    Google Scholar 

  • 30.

    Huang, Z. H., Liu, H. L. & Huang, S. Q. Interspecific pollen transfer between two coflowering species was minimized by bumblebee fidelity and differential pollen placement on the bumblebee body. J. Plant Ecol. 8(2), 109–115 (2015).

    Google Scholar 

  • 31.

    Moreira-Hernández, J. I., Terzich, N., Zambrano-Cevallos, R., Oleas, N. H. & Muchhala, N. Differential tolerance to increasing heterospecific pollen deposition in two sympatric species of Burmeistera (Campanulaceae: Lobelioideae). Int. J. Plant Sci. 180, 987–995 (2019).

    Google Scholar 

  • 32.

    Makino, T. T., Ohashi, K. & Sakai, S. How do floral display size and the density of surrounding flowers influence the likelihood of bumble bee revisitation to a plant?. Funct. Ecol. 21, 87–95 (2007).

    Google Scholar 

  • 33.

    Liao, K., Gituru, R. W., Guo, Y. H. & Wang, Q. F. The presence of co-flowering species facilitates reproductive success of Pedicularis monbeigiana (Orobanchaceae) through variation in bumble-bee foraging behaviour. Ann. Bot. 108, 877–884 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Sieber, Y. et al. Do alpine plants facilitate each other’s pollination? Experiments at a small spatial scale. Acta Oecol. 37, 369–374 (2011).

    ADS 

    Google Scholar 

  • 35.

    Yang, C. F., Wang, Q. F. & Guo, Y. H. Pollination in a patchily distributed lousewort is facilitated by presence of a co-flowering plant due to enhancement of quantity and quality of pollinator visits. Ann. Bot. 112, 1751–1758 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Losapio, G. & Schöb, C. Pollination interactions reveal direct costs and indirect benefits of plant–plant facilitation for ecosystem engineers. J. Plant Ecol. 13, 107–113 (2020).

    Google Scholar 

  • 37.

    Molina-Montenegro, M., Badano, E. & Cavieres, L. Positive interactions among plant species for pollinator service: Assessing the “magnet species” concept with invasive species. Oikos 117, 1833–1839 (2008).

    Google Scholar 

  • 38.

    Arceo-Gómez, G. & Ashman, T. L. Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: Implications for native biodiversity decline. J. Ecol. 104, 1003–1008 (2016).

    Google Scholar 

  • 39.

    Streher, N. S., Bergamo, P. J., Ashman, T. L., Wolowski, M. & Sazima, M. Effect of heterospecific pollen deposition on pollen tube growth depends on the phylogenetic relatedness between donor and recipient. AoB Plants 12, plaa016 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Suárez-Mariño, A., Arceo-Gómez, G., Sosenski, P. & Parra-Tabla, V. Patterns and effects of heterospecific pollen transfer between an invasive and two native plant species: The importance of pollen arrival time to the stigma. Am. J. Bot. 106, 1308–1315 (2019).

    PubMed 

    Google Scholar 

  • 41.

    Celaya, I. N., Arceo-Gómez, G., Alonso, C. & Parra-Tabla, V. Negative effects of heterospecific pollen receipt vary with abiotic conditions: Ecological and evolutionary implications. Ann. Bot. 116(5), 789–795 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Johnson, A. L. & Ashman, T. L. Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem. New Phytol. 221, 142–154 (2019).

    PubMed 

    Google Scholar 

  • 43.

    Albor, C., Arceo-Gómez, G. & Parra-Tabla, V. Integrating floral trait and flowering time distribution patterns help reveal a more dynamic nature of co-flowering community assembly processes. J. Ecol. 108, 2221–2231 (2020).

    Google Scholar 

  • 44.

    Brooker, R. W. et al. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 96, 18–34 (2008).

    MathSciNet 

    Google Scholar 

  • 45.

    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).

    PubMed 

    Google Scholar 

  • 46.

    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn. (Springer, 2003).

    Google Scholar 

  • 47.

    Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Cavieres, L. A., Hernández-Fuentes, C., Sierra-Almeida, A. & Kikvidze, Z. Facilitation among plants as an insurance policy for diversity in Alpine communities. Funct. Ecol. 30(1), 52–59 (2016).

    Google Scholar 

  • 49.

    Gavini, S. S., Ezcurra, C. & Aizen, M. A. Patch-level facilitation fosters high-Andean plant diversity at regional scales. J. Veg. Sci. 31, 1135–1145 (2020).

    Google Scholar 

  • 50.

    Valiente-Banuet, A. & Verdú, M. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10, 1029–1036 (2007).

    PubMed 

    Google Scholar 

  • 51.

    McCormick, M. L., Aslan, C. E., Chaudhry, T. A. & Potter, K. A. Benefits and limitations of isolated floral patches in a pollinator restoration project in Arizona. Restor Ecol. 27, 1282–1290 (2019).

    Google Scholar 

  • 52.

    Vamosi, J. C. et al. Pollination decays in biodiversity hotspots. Proc. Natl. Acad. Sci. USA 10, 956–961 (2006).

    ADS 

    Google Scholar 

  • 53.

    Parra-Tabla, V. et al. Pollen transfer networks reveal alien species as main heterospecific pollen donors with fitness consequences for natives. J. Ecol. 109, 939–951 (2021).

    Google Scholar 

  • 54.

    Ballantyne, G., Baldock, K. C. R., Rendell, L. & Willmer, P. G. Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci. Rep. 7(1), 8389 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Johnson, S. D., Peter, C. I., Nilsson, L. A. & Agren, J. Pollination success in a deceptive orchid is enhance by co-occuring magnet plants. Ecology 84, 2919–2927 (2003).

    Google Scholar 

  • 56.

    Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gómez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: Complexities, caveats, and future directions. Ann. Bot. 125(7), 1003–1012 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Arroyo, M. T. K., Primack, R. & Armesto, J. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot. 69(1), 82–97 (1982).

    Google Scholar 

  • 58.

    Arroyo, M. T. K., Armesto, J. J. & Primack, R. B. Community studies in population ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Pl. Syst. Evol. 149, 187–203 (1985).

    Google Scholar 

  • 59.

    Arroyo, M. T. K. & Squeo, F. A. Relationship between plant breeding systems and pollination. In Biological Approaches and Evolutionary Trends in Plants (ed. Kawano, S.) 205–227 (Academic Press, 1990).

    Google Scholar 

  • 60.

    Jakobsson, A., Padrón, B. & Traveset, A. Pollen transfer from invasive Carpobrotus spp. to natives—A study of pollinator behaviour and reproduction success. Biol. Conserv. 141, 136–145 (2008).

    Google Scholar 

  • 61.

    Heinrich, B. Bumblebee foraging and the economics of sociality: How have bumblebees evolved to use a large variety of flowers efficiently? Individual bees have specialized behavioral repertories, and the colony, collectively, can harvest food from many different resources. Am. Sci. 64, 384–395 (1976).

    ADS 

    Google Scholar 

  • 62.

    Rasmann, S., Alvarez, N. & Pellissier, L. The altitudinal niche-breadth hypothesis in insect–plant interactions. In Annual Plant Reviews (Eds. C. Voelckel, & G. Jander) volume 47. (pp. 339–360). (Wiley-​Blackwell Publishing, Oxford 2014).

    Google Scholar 

  • 63.

    Gegear, R. J. & Laverty, T. M. Flower constancy in bumblebees: A test of the trait variability hypothesis. Anim. Behav. 69(4), 939–949 (2005).

    Google Scholar 

  • 64.

    Iler, A. M. & Goodell, K. Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant. J. Pollinat. Ecol. 13, 174–183 (2014).

    Google Scholar 

  • 65.

    Dauber, J. et al. Effects of patch size and density on flower visitation and seed set of wild plants: A pan-European approach. J. Ecol. 98, 188–196 (2010).

    Google Scholar 

  • 66.

    Totland, Ø. Pollination in alpine Norway: Flowering phenology, insect visitors, and visitation rates in two plant communities. Canad. J. Bot. 71, 1072–1079 (1993).

    Google Scholar 

  • 67.

    Zhao, Z. G. & Wang, Y. K. Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLoS ONE 10(2), e0118299 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Hagen, M., Wikelski, M. & Kissling, W. D. Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS ONE 6(5), e19997 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Hegland, S. J. & Boeke, L. Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol. Entomol. 31, 532–538 (2006).

    Google Scholar 

  • 70.

    Lázaro, A., Lundgren, R. & Totland, Ø. Co-flowering neighbors influence the diversity and identity of pollinator groups visiting plant species. Oikos 118, 691–702 (2009).

    Google Scholar 

  • 71.

    Potts, S. G. et al. Nectar resource diversity organises flower-visitor community structure. Entomol. Exp. Appl. 113, 103–107 (2004).

    Google Scholar 

  • 72.

    Hoyle, H. et al. Plant species or flower colour diversity? Identifying the drivers of public and invertebrate response to designed annual meadows. Landsc. Urban. Plan. 180, 103–113 (2018).

    Google Scholar 

  • 73.

    Walker, B. H. Biodiversity and ecological redundancy. Biol. Conserv. 6, 18–23 (1992).

    Google Scholar 

  • 74.

    Arroyo, M. T. K., Pacheco, D. A. & Dudley, L. S. Functional role of long-lived flowers in preventing pollen limitation in a high elevation outcrossing species. AoB Plants 9(6), plx050 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Nuñez, C., Aizen, M. & Ezcurra, C. Species associations and nurse effects in patches of high-Andean vegetation. J. Veg. Sci. 10, 357–364 (1999).

    Google Scholar 

  • 76.

    Ferreyra, M., Clayton, S. & Ezcurra, C. High Mountain of the Patagonian Andes (LOLA, 2020).

    Google Scholar 

  • 77.

    Riveros, M. Biología reproductiva en especies vegetales de dos comunidades de la zona templada del sur de Chile, 40° S. Ph.D. Dissertation, Universidad de Chile, Santiago, Chile (1991).

  • 78.

    Riveros, M., Humaña, A. M. & Lanfranco, D. Actividad de los polinizadores en el Parque Nacional Puyehue, X region, Chile. Medio Ambiente 11, 5–12 (1991).

    Google Scholar 

  • 79.

    Alexander, M. P. A versatile stain for pollen, fungi, yeast and bacteria. Stain Technol. 55, 13–18 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    – R Core Development Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed April 2021 (2018).

  • 81.

    – Magnusson, A. et al. glmmTMB: Generalized linear mixed models using template model builder. https://github.com/glmmTM. Accessed April 2021 (2017).

  • 82.

    Kock, N. & Lynn, G. S. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 13(7), 546–580 (2012).

    Google Scholar 

  • 83.

    Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 11(4), 1–10 (2015).

    Google Scholar 

  • 84.

    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    PubMed 

    Google Scholar 

  • 85.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).

    Google Scholar 

  • 86.

    Arceo-Gómez, G., Alonso, C., Ashman, T. L. & Parra-Tabla, V. Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: Implications for interpretation of pollen transfer networks. Am. J. Bot. 105, 1601–1608 (2018).

    PubMed 

    Google Scholar 

  • 87.

    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R Soc. Lond. B Biol. Sci. 345, 101–118 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Google Scholar 

  • 89.

    Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3(5), 808–812 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Radio-frequency wave scattering improves fusion simulations

    Horizontal gene transfer and adaptive evolution in bacteria