Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).
Google Scholar
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Google Scholar
Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).
Google Scholar
Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).
Google Scholar
Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).
Google Scholar
Spiesman, B. J. & Gratton, C. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology 97, 1431–1441 (2016).
Google Scholar
CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).
Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).
Google Scholar
Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).
Google Scholar
Burkle, L. A. & Alarcón, R. The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Syst. 48, 24–48 (2017).
Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).
MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).
Google Scholar
Fortuna, M. A., Nagavci, A., Barbour, M. A. & Bascompte, J. Partner fidelity and asymmetric specialization in ecological networks. Am. Nat. 196, 382–389 (2020).
Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781 (2009).
Google Scholar
Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).
Mora, B. B., Shin, E., CaraDonna, P. J. & Stouffer, D. B. Untangling the seasonal dynamics of plant–pollinator communities. Nat. Commun. 11, 4086 (2020).
Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction. Nature 478, 233–235 (2011).
Google Scholar
Sebastián-González, E. Drivers of species role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).
Google Scholar
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).
Google Scholar
CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2020).
Vázquez, D. P., Chacoff, N. P. & Cagnolo, L. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90, 2039–2046 (2009).
Google Scholar
Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).
Google Scholar
Olesen, J. M., Bascompte, J., Dupont, Y. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).
Google Scholar
Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).
Google Scholar
Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).
Google Scholar
Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. Oikos 124, 14–21 (2015).
Google Scholar
Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant–pollinator networks disassemble. Am. Nat. 183, 600–611 (2014).
Google Scholar
Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).
Google Scholar
Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).
Google Scholar
Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010 (2008).
Google Scholar
Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species’ roles in food webs. Science 335, 1489–1492 (2012).
Google Scholar
Simmons, B. I. et al. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128, 154–170 (2019).
Google Scholar
Ponisio, L. C. Pyrodiversity promotes interaction complementarity and population resistance. Ecol. Evol. 10, 4431–4447 (2020).
Google Scholar
Grab, H., Blitzer, E. J., Danforth, B., Loeb, G. & Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 7, 45296 (2017).
Google Scholar
MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).
Google Scholar
Mitchell, W. A. An optimal control theory of diet selection: the effects of resource depletion and exploitative competition. Oikos 58, 16–24 (1990).
Robinson, B. W. & Wilson, D. S. Optimal foraging, specialization, and a solution to Liem’s paradox. Am. Nat. 151, 223–235 (1998).
Google Scholar
Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).
Google Scholar
Ponisio, L. C. et al. A network perspective for community assembly. Front. Ecol. Environ. 7, 103 (2019).
Google Scholar
Benadi, G. & Gegear, R. J. Adaptive foraging of pollinators can promote pollination of a rare plant species. Am. Nat. 192, E81–E92 (2018).
Google Scholar
Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).
Google Scholar
Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
Google Scholar
Fort, H., Vázquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).
Google Scholar
Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).
Google Scholar
Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).
Google Scholar
Bascompte, J. & Ferrera, A. in Theoretical Ecology: Concepts and Applications (eds McCann, A. S. & Gellner, G.) 93–115 (Oxford Univ. Press, 2020).
Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
Google Scholar
Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).
Google Scholar
Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).
Google Scholar
Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).
Google Scholar
Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).
Google Scholar
Kremen, C., Williams, N. & Thorp, R. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).
Morandin, L., Long, R. & Kremen, C. Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109, 1020–1027 (2016).
Google Scholar
Brittain, C., Williams, N., Kremen, C. & Klein, A. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280, 1471–2954 (2013).
Google Scholar
Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package (2019); https://CRAN.R-project.org/package=vegan
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).
Google Scholar
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
Google Scholar
Mora, B. B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks (2018); https://doi.org/10.1101/364703
Simmons, B. I. et al. bmotif: a package for motif analyses of bipartite networks. Methods Ecol. Evol. 10, 695–701 (2019).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).
Google Scholar
Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).
Google Scholar
Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8 (2008).
Dorazio, R. M., Kery, M., Royle, J. A. & Plattner, M. Models for inference in dynamic metacommunity systems. Ecology 91, 2466–2475 (2010).
Google Scholar
Ponisio, L. C., de Valpine, P., M’Gonigle, L. K. & Kremen, C. Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long-term pollinator metacommunity dynamics. Ecol. Lett. 22, 1048–1060 (2019).
Google Scholar
Royle, J. A. & Kéry, M. A Bayesian state–space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).
Google Scholar
Ponisio, L. C., de Valpine, P., Michaud, N. & Turek, D. One size does not fit all: customizing MCMC methods for hierarchical models using NIMBLE. Ecol. Evol. 10, 2385–2416 (2020).
Google Scholar
de Valpine, P. et al. Programming with models: writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).
Google Scholar
Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge Univ. Press, 2004).
Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170 (2018).
Google Scholar
Ponisio, L. C., M’gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).
Google Scholar
Lefcheck, J. S. PiecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/
Source: Ecology - nature.com