in

Pollinator interaction flexibility across scales affects patch colonization and occupancy

  • 1.

    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Spiesman, B. J. & Gratton, C. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology 97, 1431–1441 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

  • 8.

    Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Burkle, L. A. & Alarcón, R. The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Syst. 48, 24–48 (2017).

  • 13.

    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).

  • 14.

    MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Fortuna, M. A., Nagavci, A., Barbour, M. A. & Bascompte, J. Partner fidelity and asymmetric specialization in ecological networks. Am. Nat. 196, 382–389 (2020).

  • 16.

    Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781 (2009).

    Article 

    Google Scholar 

  • 17.

    Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).

  • 18.

    Mora, B. B., Shin, E., CaraDonna, P. J. & Stouffer, D. B. Untangling the seasonal dynamics of plant–pollinator communities. Nat. Commun. 11, 4086 (2020).

  • 19.

    Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction. Nature 478, 233–235 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Sebastián-González, E. Drivers of species role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2020).

  • 23.

    Vázquez, D. P., Chacoff, N. P. & Cagnolo, L. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90, 2039–2046 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Olesen, J. M., Bascompte, J., Dupont, Y. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. Oikos 124, 14–21 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant–pollinator networks disassemble. Am. Nat. 183, 600–611 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).

    Article 

    Google Scholar 

  • 31.

    Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).

    Article 

    Google Scholar 

  • 32.

    Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010 (2008).

    Article 

    Google Scholar 

  • 33.

    Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species’ roles in food webs. Science 335, 1489–1492 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Simmons, B. I. et al. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128, 154–170 (2019).

    Article 

    Google Scholar 

  • 35.

    Ponisio, L. C. Pyrodiversity promotes interaction complementarity and population resistance. Ecol. Evol. 10, 4431–4447 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Grab, H., Blitzer, E. J., Danforth, B., Loeb, G. & Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 7, 45296 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).

    Article 

    Google Scholar 

  • 38.

    Mitchell, W. A. An optimal control theory of diet selection: the effects of resource depletion and exploitative competition. Oikos 58, 16–24 (1990).

  • 39.

    Robinson, B. W. & Wilson, D. S. Optimal foraging, specialization, and a solution to Liem’s paradox. Am. Nat. 151, 223–235 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).

    Article 

    Google Scholar 

  • 41.

    Ponisio, L. C. et al. A network perspective for community assembly. Front. Ecol. Environ. 7, 103 (2019).

    Article 

    Google Scholar 

  • 42.

    Benadi, G. & Gegear, R. J. Adaptive foraging of pollinators can promote pollination of a rare plant species. Am. Nat. 192, E81–E92 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).

    Article 

    Google Scholar 

  • 45.

    Fort, H., Vázquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Bascompte, J. & Ferrera, A. in Theoretical Ecology: Concepts and Applications (eds McCann, A. S. & Gellner, G.) 93–115 (Oxford Univ. Press, 2020).

  • 49.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).

    Article 

    Google Scholar 

  • 54.

    Kremen, C., Williams, N. & Thorp, R. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).

  • 55.

    Morandin, L., Long, R. & Kremen, C. Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109, 1020–1027 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Brittain, C., Williams, N., Kremen, C. & Klein, A. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280, 1471–2954 (2013).

    Article 

    Google Scholar 

  • 57.

    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).

    Article 

    Google Scholar 

  • 58.

    Oksanen, J. et al. vegan: Community Ecology Package (2019); https://CRAN.R-project.org/package=vegan

  • 59.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Mora, B. B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks (2018); https://doi.org/10.1101/364703

  • 62.

    Simmons, B. I. et al. bmotif: a package for motif analyses of bipartite networks. Methods Ecol. Evol. 10, 695–701 (2019).

    Article 

    Google Scholar 

  • 63.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 64.

    Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).

    Article 

    Google Scholar 

  • 65.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8 (2008).

    Google Scholar 

  • 67.

    Dorazio, R. M., Kery, M., Royle, J. A. & Plattner, M. Models for inference in dynamic metacommunity systems. Ecology 91, 2466–2475 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Ponisio, L. C., de Valpine, P., M’Gonigle, L. K. & Kremen, C. Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long-term pollinator metacommunity dynamics. Ecol. Lett. 22, 1048–1060 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Royle, J. A. & Kéry, M. A Bayesian state–space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Ponisio, L. C., de Valpine, P., Michaud, N. & Turek, D. One size does not fit all: customizing MCMC methods for hierarchical models using NIMBLE. Ecol. Evol. 10, 2385–2416 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    de Valpine, P. et al. Programming with models: writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).

    Article 

    Google Scholar 

  • 72.

    Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge Univ. Press, 2004).

  • 73.

    Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170 (2018).

    Article 

    Google Scholar 

  • 74.

    Ponisio, L. C., M’gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).

    Article 

    Google Scholar 

  • 75.

    Lefcheck, J. S. PiecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • 76.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/


  • Source: Ecology - nature.com

    Author Correction: Calculation of external climate costs for food highlights inadequate pricing of animal products

    Encouraging solar energy adoption in rural India