in

Pollinators contribute to the maintenance of flowering plant diversity

  • 1.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • 2.

    Wills, C. et al. Nonrandom processes maintain diversity in tropical forests. Science 311, 527–531 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar 

  • 4.

    Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).

    Article 

    Google Scholar 

  • 5.

    Vamosi, J. C. et al. Pollination decays in biodiversity hotspots. Proc. Natl Acad. Sci. USA 103, 956–961 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685–706 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article 

    Google Scholar 

  • 10.

    Rodger, J. G. et al. 2021 Widespread vulnerability of plant seed production to pollinator decline. Sci. Adv. (in the press).

  • 11.

    Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).

    Article 

    Google Scholar 

  • 12.

    Sargent, R. D. & Ackerly, D. D. Plant–pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Benadi, G. & Pauw, A. Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence. J. Ecol. 106, 1892–1901 (2018).

    Article 

    Google Scholar 

  • 14.

    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Article 

    Google Scholar 

  • 15.

    Benadi, G., Bluthgen, N., Hovestadt, T. & Poethke, H. J. Population dynamics of plant and pollinator communities: stability reconsidered. Am. Nat. 179, 157–168 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Moeller, D. A. Facilitative interactions among plants via shared pollinators. Ecology 85, 3289–3301 (2004).

    Article 

    Google Scholar 

  • 17.

    Bergamo, P. J., Susin Streher, N., Traveset, A., Wolowski, M. & Sazima, M. Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecol. Lett. 23, 129–139 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Ashman, T. L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Moreira-Hernández, J. I. & Muchhala, N. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annu. Rev. Ecol. Evol. Syst. 50, 191–217 (2019).

    Article 

    Google Scholar 

  • 21.

    Ashman, T. L. et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).

    Article 

    Google Scholar 

  • 22.

    Tur, C., Saez, A., Traveset, A. & Aizen, M. A. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19, 576–586 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Levin, D. A. & Anderson, W. W. Competition for pollinators between simultaneously flowering species. Am. Nat. 104, 455–467 (1970).

    Article 

    Google Scholar 

  • 24.

    Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gómez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. Ann. Bot. 125, 1003–1012 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Lloyd, D. G. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113, 67–79 (1979).

    MathSciNet 
    Article 

    Google Scholar 

  • 26.

    Sargent, R. D. & Otto, S. P. The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am. Nat. 167, 67–80 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Armbruster, W. S. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31, 88–100 (2017).

    Article 

    Google Scholar 

  • 29.

    Minnaar, C., Anderson, B., de Jager, M. L. & Karron, J. D. Plant–pollinator interactions along the pathway to paternity. Ann. Bot. 123, 225–245 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Kantsa, A. et al. Disentangling the role of floral sensory stimuli in pollination networks. Nat. Commun. 9, 1041 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Fang, Q. & Huang, S. Q. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176–1185 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Baldwin, B. G. Origins of plant diversity in the California floristic province. Annu. Rev. Ecol. Evol. Syst. 45, 347–369 (2014).

    Article 

    Google Scholar 

  • 33.

    Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Thomson, J. D., Fung, H. F. & Ogilvie, J. E. Effects of spatial patterning of co-flowering plant species on pollination quantity and purity. Ann. Bot. 123, 303–310 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Rezende, E. L., Lavabre, J. E., Guimaraes, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Song, C. L., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Ohlemuller, R. et al. The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol. Lett. 4, 568–572 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Arceo-Gómez, G., Kaczorowski, R. L. & Ashman, T.-L. A network approach to understanding patterns of coflowering in diverse communities. Int. J. Plant Sci. 179, 569–582 (2018).

    Article 

    Google Scholar 

  • 40.

    Koski, M. H. et al. Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod Plant Interact. 9, 9–21 (2015).

    Article 

    Google Scholar 

  • 41.

    Arceo-Gómez, G. et al. Patterns of among- and within-species variation in heterospecific pollen receipt: the importance of ecological generalization. Am. J. Bot. 103, 396–407 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  • 43.

    R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).

  • 44.

    Arceo-Gómez, G., Alonso, C., Ashman, T.-L. & Parra-Tabla, V. Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: implications for interpretation of pollen transfer networks. Am. J. Bot. 105, 1601–1608 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Hayes, R. A., Cullen N., Kaczorowski R. L., O’Neill E. M. & Ashman T-L. A community-wide description and key of pollen from co-flowering plants of the serpentine seeps of Mclaughlin Reserve. Madrono (in the press).

  • 46.

    Dafni, A. Pollination Ecology: a Practical Approach (Oxford Univ. Press, 1992).

  • 47.

    McMurdie, P. J. & Holmes, S. Waste NOT, want not: why rarefying microbiome data is inadmissible. PLoS Comp. Biol. 10, e1003531 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Article 

    Google Scholar 

  • 49.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    Article 

    Google Scholar 

  • 53.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • 54.

    Le, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article 

    Google Scholar 

  • 55.

    Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).

    Google Scholar 

  • 56.

    Feinsinger, P., Spears, E. E. & Poole, R. W. A simple measure of niche breadth. Ecology 62, 27–32 (1981).

    Article 

    Google Scholar 

  • 57.

    Horn, H. S. Measurement of “overlap” in comparative ecological studies. Am. Nat. 100, 419–424 (1966).

    Article 

    Google Scholar 

  • 58.

    Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Article 

    Google Scholar 

  • 59.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).

    Google Scholar 

  • 60.

    Patefield, W. Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).

    MATH 
    Article 

    Google Scholar 

  • 61.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–5, https://CRAN.R-project.org/package=vegan (2019).

  • 62.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 63.

    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Presented at the Third international AAAI Conference on Weblogs and Social Media (2009).

  • 64.

    Arceo-Gómez, G., Kaczorowski, R. L., Patel, C. & Ashman, T. L. Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia 189, 1041–1047 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1, https://CRAN.R-project.org/package=caper (2018).

  • 67.

    Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Fort, H., Vazquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 69.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-143, https://CRAN.R-project.org/package=nlme (2019).

  • 70.

    Lefcheck, J. S. & Freckleton, R. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).

    Article 

    Google Scholar 

  • 71.

    Fox, J. & Weisberg, S. An R companion to Applied Regression, 3rd edition (Sage, 2019).

  • 72.

    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 74.

    van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Making catalytic surfaces more active to help decarbonize fuels and chemicals

    MIT-designed project achieves major advance toward fusion energy