in

Poor prey quality is compensated by higher provisioning effort in passerine birds

  • 1.

    Wright, J., Both, C., Cotton, P. A. & Bryant, D. Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning. J. Anim. Ecol. 67, 620–634 (1998).

    Article 

    Google Scholar 

  • 2.

    Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 68, 708–718 (1999).

    Article 

    Google Scholar 

  • 3.

    Perrins, C. M. & McCleery, R. H. The effect of fledging mass on the lives of Great Tits Parus major. Ardea 89, 142 (2001).

    Google Scholar 

  • 4.

    van Oort, H. & Otter, K. A. Natal nutrition and the habitat distributions of male and female black-capped chickadees. Can. J. Zool. 83, 1495–1501 (2005).

    Article 

    Google Scholar 

  • 5.

    Metcalfe, N. B. & Monaghan, P. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113 (1990).

    Article 

    Google Scholar 

  • 7.

    Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).

    Article 

    Google Scholar 

  • 8.

    Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).

    Article 

    Google Scholar 

  • 9.

    Naef-Daenzer, L., Naef-Daenzer, B. & Nager, R. G. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214 (2000).

    Article 

    Google Scholar 

  • 10.

    Williams, T. D. Physiological Adaptations for Breeding in Birds (Princeton University Press, Princeton, 2012).

    Book 

    Google Scholar 

  • 11.

    Williams, T. D. & Fowler, M. A. Individual variation in workload during parental care: can we detect a physiological signature of quality or cost of reproduction?. J. Ornithol. 156, 441–451 (2015).

    Article 

    Google Scholar 

  • 12.

    Dawson, R. D. & Bortolotti, G. R. Parental effort of American kestrels: the role of variation in brood size. Can. J. Zool. 81, 852–860 (2003).

    Article 

    Google Scholar 

  • 13.

    Ringsby, T. H., Berge, T., Saether, B. E. & Jensen, H. Reproductive success and individual variation in feeding frequency of House Sparrows (Passer domesticus). J. Ornithol. 150, 469–481 (2009).

    Article 

    Google Scholar 

  • 14.

    Mariette, M. M. et al. Using an Electronic Monitoring System to Link Offspring Provisioning and Foraging Behavior of a Wild Passerine. Auk 128, 26–35 (2011).

    Article 

    Google Scholar 

  • 15.

    García-Navas, V., Ferrer, E. S. & Sanz, J. J. Prey selectivity and parental feeding rates of Blue Tits Cyanistes caeruleus in relation to nestling age. Bird Study 59, 236–242 (2012).

    Article 

    Google Scholar 

  • 16.

    Lifjeld, J. T. et al. Effects of energy costs on the optimal diet: an experiment with pied flycatchers Ficedula hypoleuca feeding nestlings. Ornis Scand. 19, 111–118 (1988).

    Article 

    Google Scholar 

  • 17.

    Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, 135–149 (2008).

    Article 

    Google Scholar 

  • 18.

    Stodola, K. W. et al. Relative influence of male and female care in determining nestling mass in a migratory songbird. J. Avian Biol. 41, 515–522 (2010).

    Article 

    Google Scholar 

  • 19.

    Mägi, M. et al. Low reproductive success of great tits in the preferred habitat: a role of food low reproductive success of great tits in the preferred habitat: a role of food availability. Ecoscience 16, 145–157 (2009).

    Article 

    Google Scholar 

  • 20.

    Fowler, M. A. & Williams, T. D. Individual variation in parental workload and breeding productivity in female European starlings: Is the effort worth it?. Ecol. Evol. 5, 3585–3599 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Cornelius Ruhs, E., Vézina, F., Walker, M. A. & Karasov, W. H. Who pays the bill? The effects of altered brood size on parental and nestling physiology. J. Ornithol. 161, 275–288 (2019).

    Article 

    Google Scholar 

  • 22.

    Bridge, E. S. & Bonter, D. N. A low-cost radio frequency identification device for ornithological research. J. Field. Ornithol. 82, 52–59 (2011).

    Article 

    Google Scholar 

  • 23.

    Major, R. E. Stomach flushing of an insectivorous bird: an assessment of differential digestibility of prey and the risk to birds. Aust. Wildl. Res. 17, 647–657 (1990).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Harris, M. P. & Wanless, S. The diet of shags phalacrocorax aristotelis during the chick-rearing period assessed by three methods. Bird Study 40, 135–139 (1993).

    Article 

    Google Scholar 

  • 25.

    Sánchez-Bayo, F., Ward, R. & Beasley, H. A new technique to measure bird’s dietary exposure to pesticides. Anal. Chim. Acta 399, 173–183 (1999).

    Article 

    Google Scholar 

  • 26.

    Tsipoura, N. & Burger, J. Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635–644 (1999).

    Article 

    Google Scholar 

  • 27.

    Neves, V. C., Bolton, M. & Monteiro, L. R. Validation of the water offloading technique for diet assessment: an experimental study with Cory’s shearwaters (Calonectris diomedea). J. Ornithol. 147, 474–478 (2006).

    Article 

    Google Scholar 

  • 28.

    Goldsworthy, B., Young, M. J., Seddon, P. J. & van Heezik, Y. Stomach flushing does not affect apparent adult survival, chick hatching, or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biol. Conserv. 196, 115–123 (2016).

    Article 

    Google Scholar 

  • 29.

    Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Malmqvist, B. & Sjöström, P. The microdistribution of some lotic insect predators in relation to their prey and to abiotic factors. Freshw. Biol. 14, 649–656 (1984).

    Article 

    Google Scholar 

  • 31.

    van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451 (1995).

    Article 

    Google Scholar 

  • 32.

    Bale, J. S. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. B Biol. Sci. 357, 849–862 (2002).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Hansson, L. A. et al. Experimental evidence for a mismatch between insect emergence and waterfowl hatching under increased spring temperatures. Ecosphere 5, 1–9 (2014).

    Article 

    Google Scholar 

  • 34.

    Bates, D., Maechler, M., Bolker, B., & Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R package version 1.1–21. http://CRAN.R-project.org/package=lme4 (2019)

  • 35.

    Hothorn, T., Zeilis, A., Farebrother, R.W., Cummins, C., Millo, G. & Mitchell, D. lmtest: Testing linear regression models. R package version 0.9–37. http://CRAN.R-project.org/package=lmtest (2019)

  • 36.

    Kuznetsova, A., Brockoff, P.B., & R. H. Christensen. LmerTest: Tests for Random and Fixed Effects for Linear Mixed Effect Models (lmer objects of lme4 package). R package version 2.0-3. https://CRANR-projectorg/package=lmerTest (2019)

  • 37.

    Lenth, R. V., Singmann, H., Love, J., Buerkner. P. & Herve, M. emmeans: Estimated marginal means. R package version 1.4.6. https://cran.r-project.org/web/packages/emmeans/index.html (2019)

  • 38.

    Ricklefs, R. E. Preliminary models for growth rates in altricial birds. Ecology 50, 1031–1039 (1969).

    Article 

    Google Scholar 

  • 39.

    Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).

    Google Scholar 

  • 40.

    Killpack, T. L. & Karasov, W. H. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J. Exp. Biol. 215, 1806–1815 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Verboven, N. & Visser, M. E. Seasonal variation in local recruitment of great tits: the importance of being early. Oikos 81, 511 (1998).

    Article 

    Google Scholar 

  • 42.

    Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B Biol. Sci. 270, 367–372 (2003).

    Article 

    Google Scholar 

  • 43.

    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    García-navas, V. & Sanz, J. J. Seasonal decline in provisioning effort and nestling mass of Blue Tits Cyanistes caeruleus: Experimental support for the parent quality hypothesis. Ibis (Lond. 1859). 153, 59–69 (2011).

    Article 

    Google Scholar 

  • 45.

    García-Navas, V. & Sanz, J. J. The importance of a main dish: Nestling diet and foraging behaviour in Mediterranean blue tits in relation to prey phenology. Oecologia 165, 639–649 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).

    Article 

    Google Scholar 

  • 47.

    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145 (2009).

    Article 

    Google Scholar 

  • 48.

    Stalwick, J. A. & Wiebe, K. L. Delivery rates and prey use of mountain bluebirds in grassland and clear-cut habitats. Avian Conserv. Ecol. 14, 1–11 (2019).

    Google Scholar 

  • 49.

    Kadin, M., Olsson, O., Hentati-Sundberg, J., Ehrning, E. W. & Blenckner, T. Common Guillemot Uria aalge parents adjust provisioning rates to compensate for low food quality. Ibis (Lond. 1859). 158, 167–178 (2016).

    Article 

    Google Scholar 

  • 50.

    Stauss, M. J., Burkhardt, J. F. & Tomiuk, J. Foraging flight distances as a measure of parental effort in blue tits Parus caeruleus differ with environmental conditions. J. Avian Biol. 36, 47–56 (2005).

    Article 

    Google Scholar 

  • 51.

    Killpack, T. L., Tie, D. N. & Karasov, W. H. Compensatory growth in nestling Zebra Finches impacts body composition but not adaptive immune function. Auk 131, 396–406 (2014).

    Article 

    Google Scholar 

  • 52.

    Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. Ecol. Evol. Approaches 72, 189–197 (1999).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Williams, J. B. & Tieleman, B. I. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J. Exp. Biol. 203, 3153–3159 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Barceló, G., Love, O. P. & Vézina, F. Uncoupling basal and summit metabolic rates in white-throated Sparrows: digestive demand drives maintenance costs, but changes in muscle mass are not needed to improve thermogenic capacity. Physiol. Biochem. Zool. 90, 153–165 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Cotton, P. A., Kacelnik, A. & Wright, J. Chick begging as a signal: are nestlings honest?. Behav. Ecol. 7, 178–182 (1996).

    Article 

    Google Scholar 

  • 56.

    Royle, N. J., Hartley, I. R. & Parker, G. A. Begging for control: when are offspring solicitation behaviours honest?. Trends Ecol. Evol. 17, 434–440 (2002).

    Article 

    Google Scholar 

  • 57.

    Kilner, R. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Tree 12, 11–15 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Macnair, M. R. & Parker, G. A. Models of parent-offspring conflict III. Intra-brood conflict. Anim. Behav. 27, 1202–1209 (1979).

    Article 

    Google Scholar 

  • 59.

    Hamer, K. C., Lynnes, A. S. & Hill, J. K. Parent-offspring interactions in food provisioning of Manx shearwaters: Implications for nestling obesity. Anim. Behav. 57, 627–631 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: the evolution of parent-offspring signalling. Philos. Trans. R. Soc. B Biol. Sci. 355, 1581–1591 (2000).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Leonard, M. L. & Horn, A. G. Acoustic signalling of hunger and thermal state by nestling tree swallows. Anim. Behav. 61, 87–93 (2001).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Leonard, M. L. & Horn, A. G. Ambient noise and the design of begging signals. Proc. Biol. Sci. 272, 651–656 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Sacchi, R., Saino, N. & Galeotti, P. Features of begging calls reveal general condition and need of food of barn swallow (Hirundo rustica) nestlings. Behav. Ecol. 13, 268–273 (2002).

    Article 

    Google Scholar 

  • 64.

    Marques, P. A. M., Vicente, L. & Márquez, R. Iberian azure-winged magpie cyanopica (cyana) cooki nestlings begging calls: call characterization and hunger signalling. Bioacoustics 18, 133–149 (2008).

    Article 

    Google Scholar 

  • 65.

    Marques, P. A. M., Vicente, L. & Márquez, R. Nestling begging call structure and bout variation honestly signal need but not condition in Spanish sparrows. Zool. Stud. 48, 587–595 (2009).

    Google Scholar 

  • 66.

    Klenova, A. V. Chick begging calls reflect degree of hunger in three auk species (Charadriiformes: Alcidae). PLoS ONE 10, 4–6 (2015).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Williams, T. D. Physiology, activity and costs of parental care in birds. J. Exp. Biol. 221, 1–8 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    3Q: The socio-environmental complexities of renewable energy