in

Population viability analysis of the endangered Dupont’s Lark Chersophilus duponti in Spain

  • 1.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019).

    Article 
    ADS 

    Google Scholar 

  • 2.

    Pardini, R., Nichols, E. & Püttker, T. Biodiversity response to habitat loss and fragmentation. Encycl. Anthropocene https://doi.org/10.1016/B978-0-12-809665-9.09824-4 (2017).

    Article 

    Google Scholar 

  • 3.

    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14(2), 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Moilanen, A. & Hanski, I. Metapopulation dynamics: Effects of hábitat quality and landscape structure. Ecology 79, 2503–2515 (1998).

    Article 

    Google Scholar 

  • 5.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34(1), 487–515 (2003).

    Article 

    Google Scholar 

  • 6.

    Cornelius, C., Awade, M., Candia-Gallardo, C., Sieving, K. E. & Metzger, J. P. Habitat fragmentation drives inter-population variation in dispersal behavior in a Neotropical rainforest bird. Perspect. Ecol. Conserv. 15, 3–9 (2017).

    Google Scholar 

  • 7.

    Xu, Y. et al. Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecol. Appl. 29(7), e01960. https://doi.org/10.1002/eap.1960 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Hens, H., Pakanen, V., Jäkäläniemi, A., Tuomi, J. T. & Kvist, L. Low population viability in small endangered orchid populations: Genetic variation, seedling recruitment and stochasticity. Biol. Cons. 210, 174–183 (2017).

    Article 

    Google Scholar 

  • 9.

    Silva, J. P. et al. EU protected area network did not prevent a country wide population decline in a threatened grassland bird. PeerJ 6, e4284 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Gaget, E., Fay, R., Audiron, S., Villers, A. & Bretagnolle, V. Long-term decline despite conservation efforts questions Eurasian Stone-curlew population viability in intensive farmlands. Ibis 161, 359–371 (2019).

    Article 

    Google Scholar 

  • 11.

    van Oosten, H. H. et al. Hatching failure and accumulation of organic pollutants through the terrestrial food web of a declining songbird in Western Europe. Sci. Total Environ. 650, 1547–1553 (2019).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Brambilla, M. et al. Sixty years of habitat decline: impact of land-cover changes in northern Italy on the decreasing ortolan bunting Emberiza hortulana. Reg. Environ. Change 17, 323–333 (2017).

    Article 

    Google Scholar 

  • 13.

    Heldbjerg, H., Sunde, P. & Fox, A. D. Continuous Population Declines for Specialist Farmland Birds 1987–2014 in Denmark Indicates No Halt in Biodiversity Loss in Agricultural Habitats 278–292 (Bird Conservation International, 2018).

    Google Scholar 

  • 14.

    Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated with the loss of fallowland. Sci. Rep. 9, 9473 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 15.

    Reif, J. & Vermouzek, Z. Collapse of farmland bird populations in an Eastern European country following its EU accession. Conserv. Lett. https://doi.org/10.1111/conl.12585 (2018).

    Article 

    Google Scholar 

  • 16.

    Levins, R. Extinction. In: Some mathematical problems in biology. Mathematical Society of America, Providence, R.I. Pages 77–107 (1970).

  • 17.

    Hanski, I. Metapopulation ecology (Oxford University Press, 1999).

    Google Scholar 

  • 18.

    Johnson, M. D. Measuring habitat quality: A review. Condor 109, 489–504 (2007).

    Article 

    Google Scholar 

  • 19.

    Vögeli, M., Serrano, D., Pacios, F. & Tella, J. L. The relative importance of patch habitat quality and landscape attributes on a declining steppe-bird metapopulation. Biol. Cons. 143, 1057–1067 (2010).

    Article 

    Google Scholar 

  • 20.

    Traba, J., Sastre, P. & Morales, M. B. Factors determining species richness and composition of steppe bird communities in peninsular Spain: grass-steppe vs. shrub-steppe bird species. In Steppe Ecosystems (eds Morales, M. B. & Traba, J.) (Nova Science, 2013).

    Google Scholar 

  • 21.

    Burfield, I. J. The conservation status of steppic birds in Europe. In Ecology and Conservation of Steppe-Land Birds (eds Bota, G. et al.) 69–102 (Lynx Edicions, 2005).

    Google Scholar 

  • 22.

    Donald, P. F., Sanderson, F. J., Burfield, I. J. & van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agr. Ecosyst. Environ. 116(3–4), 189–196 (2006).

    Article 

    Google Scholar 

  • 23.

    Burfield, I. & van Bommel, F. Birds in Europe: Population Estimates, Trends and Conservation Status (Birdlife International, 2004).

    Google Scholar 

  • 24.

    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key?. Trends Ecol. Evol. 18(4), 182–188 (2003).

    Article 

    Google Scholar 

  • 25.

    Santos, T. & Suárez, F. Biogeography and population trends of iberian steppe bird. In Ecology and Conservation of Steppe-Land Birds (eds Bota, G. et al.) 69–102 (Lynx Edicions, 2005).

    Google Scholar 

  • 26.

    Gómez-Catasús, J., Garza, V. & Traba, J. Wind farms affect the occurrence, abundance and population trends of small passerine birds: The case of the Dupont’s Lark. J. Appl. Ecol. 55, 2033–2042 (2018).

    Article 

    Google Scholar 

  • 27.

    Donald, P. F., Green, R. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Ser. B. 155, 39–43 (2001).

    Google Scholar 

  • 28.

    Brotons, L., Mañosa, S. & Estrada, J. Modelling the effects of irrigation schemes on the distribution of steppe birds in Mediterranean farmland. Biodivers. Conserv. 13, 1039–1058 (2004).

    Article 

    Google Scholar 

  • 29.

    Madroño, A. et al. (eds) Libro rojo de las aves de España (SEO/BirdLife y Dirección General para la Biodiversidad, 2004).

    Google Scholar 

  • 30.

    Concepción, E. D. & Díaz, M. Medidas agroambientales y conservación de la biodiversidad: Limitaciones y perspectivas de futuro. Ecosistemas 22(1), 44–49. https://doi.org/10.7818/ECOS.2013.22-1.08 (2013).

    Article 

    Google Scholar 

  • 31.

    Traba, J. Intensificación agrícola y efectos sobre las aves. Revista de la Sociedad Cordobesa de Historia Natural 3, 39–50 (2020).

    Google Scholar 

  • 32.

    Prévosto, B. et al. Impacts of land abandonment on vegetation: Successional pathways in European habitats. Folia Geobot 46, 303–325. https://doi.org/10.1007/s12224-010-9096-z (2011).

    Article 

    Google Scholar 

  • 33.

    García-Tejero, S., Taboada, A., Tárrega, R. & Salgado, J. M. Land use changes and ground dwelling beetle conservation in extensive grazing dehesa systems of north-west Spain. Biol. Cons. 161, 58–66 (2013).

    Article 

    Google Scholar 

  • 34.

    Dennis, P. et al. The effects of livestock grazing on foliar arthropods associated with bird diet in upland grasslands of Scotland. J. Appl. Ecol. 45(1), 279–287 (2008).

    Article 

    Google Scholar 

  • 35.

    BirdLife International. European Red List of Birds (Office for Official Publications of the European Communities, 2015).

    Google Scholar 

  • 36.

    Gómez-Catasús, J. et al. European population trends and current conservation status of an endangered steppe-bird species: the Dupont’s Lark Chersophilus duponti. PeerJ 6, e5627. https://doi.org/10.7717/peerj.5627 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    de Juana, E. & Suárez, F. Dupont’s Lark (Chersophilus duponti), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, 2020).

    Google Scholar 

  • 38.

    García, J. T. et al. Genetic and phenotypic variation among geographically isolated populations of the globally threatened Dupont’s Lark Chersophilus duponti. Mol. Phylogenet. Evol. 46(1), 237–251 (2008).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 39.

    Méndez, M., Tella, J. L. & Godoy, J. A. Restricted gene flow and genetic drift in recently fragmented populations of an endangered steppe bird. Biol. Cons. 144, 2615–2622 (2011).

    Article 

    Google Scholar 

  • 40.

    Méndez, M., Vögeli, M., Tella, J. L. & Godoy, J. A. Joint effects of population size and isolation on genetic erosion in fragmented populations: Finding fragmentation thresholds for management. Evol. Appl. 7, 506–518 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Garza, V. & Suárez, F. Distribución, población y selección de hábitat de la Alondra de Dupont (Chersophilus duponti) en la Península Ibérica. Ardeola 37, 3–12 (1990).

    Google Scholar 

  • 42.

    Martín-Vivaldi, M., Marín, J. M., Archila, F., López, E. & De Manuel, L. C. Caracterización de una nueva población reproductora de Alondra de Dupont (Chersophilus duponti) (Passeriformes, Alaudidae) en el Sureste Ibérico. Zool. Baetica 10, 185–192 (1999).

    Google Scholar 

  • 43.

    Garza, V. et al. Home range, territoriality and habitat selection by the Dupont’s Lark Chersophilus duponti during the breeding and postbreeding periods. Ardeola 52, 133–146 (2005).

    Google Scholar 

  • 44.

    Seoane, J. et al. Habitat-suitability modelling to assess the effects of land-use changes on Dupont’s Lark Chersophilus duponti: A case study in the Layna Important Bird Area. Biol. Cons. 128, 241–252 (2006).

    Article 

    Google Scholar 

  • 45.

    Nogués-Bravo, D. & Agirre, A. Patrón y modelos de distribución espacial de la alondra ricotí Chersophilus duponti durante el periodo reproductor en el LIC de Ablitas (Navarra). Ardeola 53, 55–68 (2006).

    Google Scholar 

  • 46.

    García, J. T. et al. Assessing the distribution, habitat, and population size of the threatened Dupont’s Lark Chersophilus duponti in Morocco: Lessons for conservation. Oryx 42, 592–599 (2008).

    Article 

    Google Scholar 

  • 47.

    Pérez-Granados, C., López-Iborra, G. M. & Seoane, J. A multi-scale analysis of habitat selection in peripheral populations of the endangered Dupont’s Lark Chersophilus duponti. Bird Conserv. Int. 27, 398–413 (2017).

    Article 

    Google Scholar 

  • 48.

    García-Antón, A., Garza, V., Hernández-Justribó, J. & Traba, J. Factors affecting Dupont’s Lark distribution and range regression in Spain. PLoS ONE 14, e0211549 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    García-Antón, A., Garza, V. & Traba, J. (in press). Connectivity in Spanish metapopulation of Dupont’s Lark may be maintained by dispersal over medium 3 distances and stepping stones. PeerJ.

  • 50.

    Traba, J., Garza, V., García-Antón, A., Gómez-Catasús, J., Zurdo, J., Pérez-Granados, C., Morales, M. B., Oñate, J. J., Herranz, J., Malo, J. Criterios para la gestión y conservación de la población española de alondra ricotí Chersophilus duponti. Fundación Biodiversidad, Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. (2019).

  • 51.

    Vögeli, M., Serrano, D., Tella, J. L., Méndez, M. & Godoy, J. A. Sex determination of Dupont´s lark Chersophilus duponti using molecular sexing and discriminant functions. Ardeola 54, 69–79 (2007).

    Google Scholar 

  • 52.

    Suárez, F. et al. Sex-ratios of an endangered lark after controlling for a male-biased sampling. Ardeola 56, 113–118 (2009).

    Google Scholar 

  • 53.

    Garza, V., Suárez, F., Tella, J. L. Alondra de Dupont, Chersophilus duponti. In: Madroño, A., González, C., Atienza, J. C. (eds). Libro Rojo de las Aves de España. Madrid: Dirección General para la Biodiversidad-SEO/BirdLife pp 309–312. (2004).

  • 54.

    Íñigo, A., Garza, V., Tella, J. L., Laiolo, P., Suárez, F., Barov, B. Action Plan for the Dupont’s Lark Chersophilus duponti in the European Union. SEO/Birdlife – BirdLife International –Comisión Europea. (2008).

  • 55.

    Gómez-Catasús, J. et al. Hierarchical habitat-use by an endangered steppe bird in fragmented landscapes is associated with large connected patches and high food availability. Sci Rep 9, 19010 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 56.

    Reverter, M. et al. Interactions in shrub-steppes: Implications for the maintenance of a threatened bird. Ecosistemas 28, 69–77 (2019).

    Article 

    Google Scholar 

  • 57.

    Serrano, D. et al. Renewables in Spain threaten biodiversity. Science 370, 1282–1283 (2020).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 58.

    Pe’er, G. et al. A greener path for the EU common agricultural policy. Science 365(6452), 449–451 (2019).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 59.

    Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. (eds.) Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.1. Gland, Switzerland: IUCN. ix + 99pp. (2017).

  • 60.

    Flather, C. H., Hayward, G. D., Beissinger, S. R. & Stephens, P. A. Minimum viable populations: Is there a “magic number” for conservation practitioners?. Trends Ecol. Evol. 26(6), 307–316 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Carvajal, M. A., Alaniz, A. J., Smith-Ramírez, C. & Sieving, K. E. Assessing habitat loss and fragmentation and their effects on population viability of forest specialist birds: Linking biogeographical and population approaches. Divers. Distrib. 24, 820–830 (2018).

    Article 

    Google Scholar 

  • 62.

    Trask, A. E. et al. Evaluating the efficacy of independent versus simultaneous management strategies to address ecological and genetic threats to population viability. J. Appl. Ecol. 56, 2264–2273 (2019).

    Article 

    Google Scholar 

  • 63.

    Akçakaya, H. R. & Sjögren-Gulve, P. Population viability analyses in conservation planning: An overview. Ecol. Bull. 48, 9–21 (2000).

    Google Scholar 

  • 64.

    Frankham, R., Ballou, J., Briscoe, D. & McInnes, K. Introduction to Conservation Genetics (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • 65.

    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132(5), 652–661 (1988).

    Article 

    Google Scholar 

  • 66.

    Bota, G., Giralt, D. & Guixé, D. L. Alondra Ricotí en Cataluña: evolución histórica de una población en el límite del área de distribución (II Meeting of the Dupont’s Lark Experts Group, 2016).

    Google Scholar 

  • 67.

    Pérez-Granados, C., Bota, G., Giralt, D. & Traba, J. A cost-effective protocol for monitoring birds using autonomous recording units: A case study with a night-time singing passerine. Bird Study 65(3), 338–345 (2018).

    Article 

    Google Scholar 

  • 68.

    García-Antón, A., Garza, V. & Traba, J. Dispersión de más de 30 km en un macho de primer año de alondra ricotí (Chersophilus duponti) en el Sistema Ibérico. I Workshop Nacional de la Alondra ricotí Chersophilus duponti: Estrategias Futuras. Estación Ornitológica de Padul, Granada. 13 junio (2015).

  • 69.

    Kauhala, K., Helle, P. & Helle, E. Predator control and the density and reproductive success of grouse populations in Finland. Ecography 23, 161–168 (2000).

    Article 

    Google Scholar 

  • 70.

    Fletcher, K., Aebischer, N. J., Baines, D., Foster, R. & Hoodless, A. N. Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J. Appl. Ecol. 47, 263–272 (2010).

    Article 

    Google Scholar 

  • 71.

    Banks, P. B., Dickman, C. R. & Newsome, A. E. Ecological costs of feral predator control: Foxes and rabbits. J. Wildl. Manag. 62(2), 766–772 (1998).

    Article 

    Google Scholar 

  • 72.

    Bolton, M., Tyler, G., Smith, K. & Bamford, R. The impact of predator control on lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J. Appl. Ecol. 44, 534–544 (2007).

    Article 

    Google Scholar 

  • 73.

    Walsh, J. C., Wilson, K. A., Benshemesh, J. & Possingham, H. P. Unexpected outcomes of invasive predator control: The importance of evaluating conservation management actions. Anim. Conserv. 15, 319–328 (2012).

    Article 

    Google Scholar 

  • 74.

    Oro, D., Margalida, A., Carrete, M., Heredia, R. & Donázar, J. A. Testing the goodness of supplementary feeding to enhance population viability in an endangered vulture. PLoS ONE 3(12), e4084 (2008).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 75.

    Ruffino, L. et al. Reproductive responses of birds to experimental food supplementation: A meta-analysis. Front. Zool. 11, 80 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Cuesta, D., Taboada, A., Calvo, L. & Salgado, J. M. Short- and medium-term effects of experimental nitrogen fertilization on arthropods associated with Calluna vulgaris heathlands in north-west Spain. Environ. Pollut. 152, 394–402 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Estrada, A., Delgadom, M. P., Arroyo, B., Traba, J. & Morales, M. B. Forecasting large-scale habitat suitability of European bustards under climate change: The role of environmental and geographic variables. PLoS ONE 11(3), e0149810 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Zhang, X., Johnston, E. R., Li, L., Konstantinidis, K. T. & Han, X. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME J. 11, 885–895 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Laiolo, P., Vögeli, M., Serrano, D. & Tella, J. L. Song diversity predicts the viability of fragmented bird populations. PLoS ONE 3(3), e1822 (2008).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 80.

    Traba, J., García de la Morena, E. L. & Garza, V. Análisis de Viabilidad de Poblaciones como herramienta para el diseño de Parques Eólicos. El caso de las poblaciones de alondra ricotí (Chersophilus duponti) del sur de Soria. I Congreso Ibérico sobre Energía Eólica y Conservación de Fauna. Jerez de la Frontera, Cádiz (2011).

  • 81.

    Suárez, F. & Carriles, E. Análisis de viabilidad poblacional. In: Suárez, F. (ed.) La alondra ricotí (Chersophilus duponti), pp. 319–326. Dirección General para la Biodiversidad. Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid (2010).

  • 82.

    Pérez-Granados, C., López-Iborra, G. M., Garza, V. & Traba, J. Breeding biology of the endangered Dupont’s Lark Chersophilus duponti in two separate Spanish shrub-steppes. Bird Study 64(3), 328–338 (2017).

    Article 

    Google Scholar 

  • 83.

    Pérez-Granados, C. & López-Iborra, G. M. ¿Por qué la alondra ricotí debe catalogarse como “En peligro de Extinción”?. Quercus 337, 18–25 (2014).

    Google Scholar 

  • 84.

    Pérez-Granados, C. & López-Iborra, G. M. Census of breeding birds and population trends of the Dupont’s Lark Chersophilus duponti in eastern Spain. Ardeola 60, 143–150 (2013).

    Article 

    Google Scholar 

  • 85.

    Suárez, F. La alondra ricotí (Chersophilus duponti). Dirección General para la Biodiversidad. Ministerio de Medio Ambiente y Medio Rural y Marino Medio Rural y Marino, Madrid. 525 pp (2010).

  • 86.

    Lacy, R. C., & Pollak, J. P. Vortex: A Stochastic Simulation of the Extinction Process. Version 10.2.9. Chicago Zoological Society, Brookfield, Illinois, USA (2017).

  • 87.

    Lacy, R. C. Considering Threats to the Viability of Small Populations Using Individual-Based Models. Ecol. Bull. 48, 39–51 (2000).

    Google Scholar 

  • 88.

    Ogrady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133(1), 42–51 (2006).

    Article 

    Google Scholar 

  • 89.

    Laiolo, P., Vögeli, M., Serrano, D. & Tella, J. L. Testing acoustic versus physical marking: Two complementary methods for individual-based monitoring of elusive species. J. Avian Biol. 38, 672–681 (2007).

    Article 

    Google Scholar 

  • 90.

    Vögeli, M., Laiolo, P., Serrano, D. & Tella, J. L. Who are we sampling? Apparent survival differs between methods in a secretive species. Oikos 117(12), 1816–1823 (2008).

    Article 

    Google Scholar 

  • 91.

    Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

  • 92.

    Pérez-Granados, C. & López-Iborra, G. M. Baja dispersión adulta y baja tasa de recaptura juvenil de la alondra ricotí (Chersophilus duponti) en el Rincón de Ademuz (Valencia). XX Iberian Ringing Congress (2015).

  • 93.

    Briefer, E., Rybak, F. & Aubin, T. When to be a dear enemy: flexible acoustic relationships of neighbouring skylarks Alauda arvensis. Anim. Behav. 76, 1319–1325 (2008).

    Article 

    Google Scholar 

  • 94.

    Delius, J. D. A population study of Skylarks Alauda arvensis. Ibis 107, 466–492 (1965).

    Article 

    Google Scholar 

  • 95.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Phytoplankton biodiversity and the inverted paradox

    Rover images confirm Jezero crater is an ancient Martian lake