in

Pore architecture and particulate organic matter in soils under monoculture switchgrass and restored prairie in contrasting topography

  • 1.

    Gelfand, I. et al. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514–517 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Sprunger, C. D. & Philip Robertson, G. Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma 318, 42–51 (2018).

    CAS 
    Article 

    Google Scholar 

  • 3.

    DuPont, S. T. et al. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant Soil 381, 405–420 (2014).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 356, 6375. https://doi.org/10.1126/science.aal2324 (2017).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Kravchenko, A. N. et al. Microbial spatial footprint as a driver of soil carbon stabilization. Nat. Commun. https://doi.org/10.1038/s41467-019-11057-4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 1–7 (2019).

    Article 

    Google Scholar 

  • 7.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  • 8.

    Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: A review. Geoderma 314, 122–137 (2018).

    Article 

    Google Scholar 

  • 10.

    Pohl, M., Alig, D., Körner, C. & Rixen, C. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324, 91–102 (2009).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Bodner, G., Leitner, D. & Kaul, H. P. Coarse and fine root plants affect pore size distributions differently. Plant Soil 380, 133–151 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L. & Ritz, K. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Kravchenko, A. N. et al. X-ray computed tomography to predict soil N2O production via bacterial denitrification and N2O emission in contrasting bioenergy cropping systems. GCB Bioenergy 10, 894–909 (2018).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Cambardella, C. A. & Elliott, E. T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783 (1992).

    Article 

    Google Scholar 

  • 15.

    Gregorich, E. G., Beare, M. H., McKim, U. F. & Skjemstad, J. O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 70, 975–985 (2006).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Besnard, E., Chenu, C., Balesdent, J., Puget, P. & Arrouays, D. Fate of particulate organic matter in soil aggregates during cultivation. Eur. J. Soil Sci. 47, 495–503 (1996).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Haddix, M. L. et al. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma 363, 114160 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184–199 (2015).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).

    Article 

    Google Scholar 

  • 20.

    Shi, P. et al. The effects of ecological construction and topography on soil organic carbon and total nitrogen in the Loess Plateau of China. Environ. Earth Sci. 78, 1–8 (2019).

    Article 

    Google Scholar 

  • 21.

    Cnudde, V. & Boone, M. N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Rev. 123, 1–17 (2013).

    Article 

    Google Scholar 

  • 22.

    Wang, W., Kravchenko, A. N., Smucker, A. J. M., Liang, W. & Rivers, M. L. Intra-aggregate pore characteristics: X-ray computed microtomography analysis. Soil Sci. Soc. Am. J. 76, 1159–1171 (2012).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Diel, J., Vogel, H. J. & Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 345, 63–71 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Pires, L. F., Auler, A. C., Roque, W. L. & Mooney, S. J. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma 362, 114103 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Negassa, W. C. et al. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS ONE 10, 1–22 (2015).

    Article 

    Google Scholar 

  • 26.

    Quigley, M. Y., Negassa, W. C., Guber, A. K., Rivers, M. L. & Kravchenko, A. N. Influence of pore characteristics on the fate and distribution of newly added carbon. Front. Environ. Sci. 6, 1–13 (2018).

    Article 

    Google Scholar 

  • 27.

    Juyal, A., Otten, W., Baveye, P. C. & Eickhorst, T. Influence of soil structure on the spread of Pseudomonas fluorescens in soil at microscale. Eur. J. Soil Sci. 72, 141–153 (2021).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kravchenko, A. N., Negassa, W., Guber, A. K. & Schmidt, S. New approach to measure soil particulate organic matter in intact samples using X-ray computed microtomography. Soil Sci. Soc. Am. J. 78, 1177–1185 (2014).

    Article 

    Google Scholar 

  • 29.

    Peth, S. et al. Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography. Soil Biol. Biochem. 78, 189–194 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Gee, G. W. & Or, D. 2.4 Particle-Size Analysis (Soil Science Society of America, 2018).

    Google Scholar 

  • 31.

    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Münch, B. & Holzer, L. Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 91, 4059–4067 (2008).

    Article 

    Google Scholar 

  • 33.

    Houston, A. N., Otten, W., Baveye, P. C. & Hapca, S. Adaptive-window indicator kriging: A thresholding method for computed tomography images of porous media. Comput. Geosci. 54, 239–248 (2013).

    Article 

    Google Scholar 

  • 34.

    Doube, M. et al. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Houston, A. N. et al. Effect of scanning and image reconstruction settings in X-ray computed microtomography on quality and segmentation of 3D soil images. Geoderma 207–208, 154–165 (2013).

    Article 

    Google Scholar 

  • 36.

    Milliken, G. A. & Johnson, D. E. Analysis of Messy Data, Volume II: Nonreplicated experiments. Analysis of Messy Data, Volume II: Nonreplicated Experiments (Chaoman/CRC Press, 2017).

    Book 

    Google Scholar 

  • 37.

    Ladoni, M., Basir, A., Robertson, P. G. & Kravchenko, A. N. Scaling-up: Cover crops differentially influence soil carbon in agricultural fields with diverse topography. Agric. Ecosyst. Environ. 225, 93–103 (2016).

    Article 

    Google Scholar 

  • 38.

    Ontl, T. A., Hofmockel, K. S., Cambardella, C. A., Schulte, L. A. & Kolka, R. K. Topographic and soil influences on root productivity of three bioenergy cropping systems. New Phytol. 199, 727–737 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Zhu, M. et al. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China. J. Soils Sediments 19, 1640–1650 (2019).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Shi, P. et al. Land-use types and slope topography affect the soil labile carbon fractions in the Loess hilly-gully area of Shaanxi, China. Arch. Agron. Soil Sci. 66, 638–650 (2020).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Ontl, T. A., Cambardella, C. A., Schulte, L. A. & Kolka, R. K. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma 255–256, 1–11 (2015).

    Article 

    Google Scholar 

  • 42.

    Kravchenko, A. N. et al. Spatial patterns of extracellular enzymes: Combining X-ray computed micro-tomography and 2D zymography. Soil Biol. Biochem. 135, 411–419 (2019).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Glob. Change Biol. 19, 988–995 (2013).

    Article 

    Google Scholar 

  • 44.

    Oades, J. M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56, 377–400 (1993).

    Article 

    Google Scholar 

  • 45.

    Kravchenko, A. N. & Guber, A. K. Soil pores and their contributions to soil carbon processes. Geoderma 287, 31–39 (2017).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Wickings, K., Grandy, A. S. & Kravchenko, A. N. Going with the flow: Landscape position drives differences in microbial biomass and activity in conventional, low input, and organic agricultural systems in the Midwestern U.S. Agric. Ecosyst. Environ. 218, 1–10 (2016).

    Article 

    Google Scholar 

  • 47.

    da Jesus, E. C. et al. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. GCB Bioenergy 8, 481–494 (2016).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Poirier, V., Roumet, C. & Munson, A. D. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 120, 246–259 (2018).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Toosi, E. R., Kravchenko, A. N., Guber, A. K. & Rivers, M. L. Pore characteristics regulate priming and fate of carbon from plant residue. Soil Biol. Biochem. 113, 219–230 (2017).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Options for the Diablo Canyon nuclear plant

    J-WAFS launches Food and Climate Systems Transformation Alliance