Ferrarini, A., Dai, J., Bai, Y. & Alatalo, J. M. Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change. Sci. Total Environ. 671, 1086–1093 (2019).
Google Scholar
Ferrarini, A., Alsafran, M. H. S. A., Dai, J. & Alatalo, J. M. Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study. Clim. Dyn. 52, 1413–1423 (2019).
Google Scholar
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).
Google Scholar
Mousavi Kouhi, S. M. & Erfanian, M. B. Predicting the present and future distribution of medusahead and barbed goatgrass in Iran. Ecopersia 8, 41–46 (2020).
Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M. & Nouri, Z. The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Reg. Environ. Change 19, 1495–1506 (2019).
Google Scholar
Huntley, B., Berry, P. M., Cramer, W. & McDonald, A. P. Special paper: Modelling present and potential future ranges of some European higher plants using climate response surfaces. J. Biogeogr. 22, 967 (1995).
Google Scholar
Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?: Evaluating bioclimate envelope models. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
Google Scholar
Hällfors, M. H. et al. Assessing the need and potential of assisted migration using species distribution models. Biol. Conserv. 196, 60–68 (2016).
Google Scholar
Kamakhina, G. L. Kopetdagh-Khorassan Flora: Regional Features of Central Kopetdagh. In Biogeography and Ecology of Turkmenistan (eds. Fet, V. & Atamuradov, K. I.) Vol. 72 129–148 (Springer Netherlands, 1994).
Memariani, F., Zarrinpour, V. & Akhani, H. A review of plant diversity, vegetation, and phytogeography of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region (northeastern Iran–southern Turkmenistan). Phytotaxa 249, 8 (2016).
Google Scholar
Fet, V. Biogeographic Position of the Khorassan-Kopetdagh. In Biogeography and Ecology of Turkmenistan (eds. Fet, V. & Atamuradov, K. I.) Vol. 72 197–204 (Springer Netherlands, 1994).
Memariani, F. Khorassan-Kopet Dagh mountains. In Plant Biogeography and Vegetation of High Mountains of Central and South-West Asia (ed. Noroozi, J.) (Springer, 2020). https://datadryad.org/stash/dataset/doi:10.5061/dryad.4sb6383
Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F. & Mesdaghi, M. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE 15, e0237527 (2020).
Google Scholar
Erfanian, M. B. et al. Data from: Plant community responses to environmentally-friendly piste management in northeast Iran. Dryad Dataset. https://datadryad.org/stash/dataset/doi:10.5061/dryad.4sb6383 (2019).
Jamzad, Z. Flora of Iran vol. 76 Lamiaceae. (Research Institute of Forests & Rangelands, 2012).
Sagharyan, M., Ganjeali, A. & Cheniany, M. Investigating the effect of antioxidant compounds and various concentrations of BAP and NAA on the improvement of in vitro stem and root formation of Nepeta binaloudensis Jamzad. NBR 6, 198–205 (2019).
Google Scholar
Nadjafi, F., Koocheki, A., Moghaddam, P. R. & Rastgoo, M. Ethnopharmacology of Nepeta binaludensis Jamzad a highly threatened medicinal plant of Iran. J. Med. Plants 8, 29–35 (2009).
Nadjafi, F., Koocheki, A., Honermeier, B. & Asili, J. Autecology, ethnomedicinal and phytochemical studies of Nepeta binaludensis Jamzad a highly endangered medicinal plant of Iran. J. Essent. Oil Bear. Plants 12, 97–110 (2009).
Google Scholar
Memariani, F., Akhani, H. & Joharchi, M. R. Endemic plants of Khorassan-Kopet Dagh floristic province in Irano-Turanian region: Diversity, distribution patterns and conservation status. Phytotaxa 249, 31 (2016).
Google Scholar
Salmaki, Y. & Joharchi, M. R. Phlomoides binaludensis (Phlomideae, Lamioideae, Lamiaceae), a new species from northeastern Iran. Phytotaxa 172, 265 (2014).
Google Scholar
Pahlevani, A. H., Liede-Schumann, S. & Akhani, H. Seed and capsule morphology of Iranian perennial species of Euphorbia (Euphorbiaceae) and its phylogenetic application: Perennial Species of Euphorbia in Iran. Bot. J. Linn. Soc. 177, 335–377 (2015).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).
Google Scholar
Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).
Google Scholar
Farashi, A., Shariati, M. & Hosseini, M. Identifying biodiversity hotspots for threatened mammal species in Iran. Mamm. Biol. 87, 71–88 (2017).
Google Scholar
Hosseinzadeh, M. S., Fois, M., Zangi, B. & Kazemi, S. M. Predicting past, current and future habitat suitability and geographic distribution of the Iranian endemic species Microgecko latifi (Sauria: Gekkonidae). J. Arid Environ. 183, 104283 (2020).
Google Scholar
Noroozi, J. et al. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9, 12991 (2019).
Google Scholar
Erfanian, M. B., Ejtehadi, H., Vaezi, J. & Moazzeni, H. Plant community responses to multiple disturbances in an arid region of northeast Iran. Land Degrad. Dev. 30, 1554–1563 (2019).
Google Scholar
Erfanian, M. B. et al. Plant community responses to environmentally friendly piste management in northeast Iran. Ecol. Evol. 9, 8193–8200 (2019).
Google Scholar
Memariani, F. et al. Plant diversity of the Khorassan-Kopet Dagh Floristic Province (Irano-Turanian Region). (Magnolia Press, 2016)
Memariani, F., Joharchi, M. R., Ejtehadi, H. & Emadzade, K. A contribution to the flora and vegetation of Binalood mountain range, NE Iran: Floristic and chorological studies in Fereizi region. Ferdowsi Univ. Int. J. Biol. Sci. J. Cell Mol. Res. 1, 1–17 (2009).
Memariani, F. & Joharchi, M. R. Iris ferdowsii (Iridaceae), a new species of section Regelia from northeast of Iran. Phytotaxa 291, 192 (2017).
Google Scholar
Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R Package. https://cran.r-project.org/package=biomod2 (2019).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Ahmadi, M., Dadashi Roudbari, A. A., Akbari Azirani, T. & Karami, J. The performance of the HadGEM2-ES model in the evaluation of seasonal temperature anomaly of Iran under RCP scenarios. J. Earth Space Phys. 45, 625–644 (2019).
Dray, S. & Dufour, A.-B. The ade4 Package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).
Google Scholar
Menard, S. W. Applied Logistic Regression Analysis (Sage Publications, Thousand Oaks, 2002).
Google Scholar
Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159 (1977).
Google Scholar
Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
Google Scholar
Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).
Google Scholar
Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 60, 101150 (2020).
Google Scholar
Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558 (2020).
Google Scholar
Abdelaal, M., Fois, M., Fenu, G. & Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép, Egypt. Ecol. Inform. 50, 68–75 (2019).
Google Scholar
Thuiller, W. et al. Endemic species and ecosystem sensitivity to climate change in Namibia. Glob. Change Biol. 12, 759–776 (2006).
Google Scholar
Chitale, V. S., Behera, M. D. & Roy, P. S. Future of endemic flora of biodiversity hotspots in India. PLoS ONE 9, e115264 (2014).
Google Scholar
Fois, M., Bacchetta, G., Cogoni, D. & Fenu, G. Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: A nice and complex strategy in its raw state?. J. Environ. Plan. Manag. 61, 332–347 (2018).
Google Scholar
Mamet, S. D., Brown, C. D., Trant, A. J. & Laroque, C. P. Shifting global Larix distributions: Northern expansion and southern retraction as species respond to changing climate. J. Biogeogr. 46, 30–44 (2019).
Google Scholar
Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change: Predicting species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).
Google Scholar
Hosseini, S. S., Ejtehadi, H. & Memariani, F. The first report Nepeta binaloudensis Jamzad in Hezar masjed mountains of Khorasan Razavi province. In Proceedings of the 9th National Congress and 7th International Congrees of Bilogy of Iran (2016).
Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
Google Scholar
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
Google Scholar
Casazza, G. et al. Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol. Conserv. 179, 129–138 (2014).
Google Scholar
Zhang, M.-G. et al. Major declines of woody plant species ranges under climate change in Yunnan, China. Divers. Distrib. 20, 405–415 (2014).
Google Scholar
Sanjerehei, M. M. & Rundel, P. W. The impact of climate change on habitat suitability for Artemisia sieberi and Artemisia aucheri (Asteraceae)—A modeling approach. Pol. J. Ecol. 65, 97–109 (2017).
Google Scholar
Abolmaali, S.M.-R., Tarkesh, M. & Bashari, H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 43, 116–123 (2018).
Google Scholar
Di Musciano, M. et al. Dispersal ability of threatened species affects future distributions. Plant Ecol. 221, 265–281 (2020).
Google Scholar
Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D. & Bacchetta, G. The reliability of conservation status assessments at regional level: Past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J. Nat. Conserv. 33, 1–9 (2016).
Google Scholar
Source: Ecology - nature.com