in

Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change

  • 1.

    Ferrarini, A., Dai, J., Bai, Y. & Alatalo, J. M. Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change. Sci. Total Environ. 671, 1086–1093 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Ferrarini, A., Alsafran, M. H. S. A., Dai, J. & Alatalo, J. M. Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study. Clim. Dyn. 52, 1413–1423 (2019).

    Article 

    Google Scholar 

  • 3.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Mousavi Kouhi, S. M. & Erfanian, M. B. Predicting the present and future distribution of medusahead and barbed goatgrass in Iran. Ecopersia 8, 41–46 (2020).

    Google Scholar 

  • 6.

    Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M. & Nouri, Z. The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Reg. Environ. Change 19, 1495–1506 (2019).

    Article 

    Google Scholar 

  • 7.

    Huntley, B., Berry, P. M., Cramer, W. & McDonald, A. P. Special paper: Modelling present and potential future ranges of some European higher plants using climate response surfaces. J. Biogeogr. 22, 967 (1995).

    Article 

    Google Scholar 

  • 8.

    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?: Evaluating bioclimate envelope models. Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article 

    Google Scholar 

  • 9.

    Hällfors, M. H. et al. Assessing the need and potential of assisted migration using species distribution models. Biol. Conserv. 196, 60–68 (2016).

    Article 

    Google Scholar 

  • 10.

    Kamakhina, G. L. Kopetdagh-Khorassan Flora: Regional Features of Central Kopetdagh. In Biogeography and Ecology of Turkmenistan (eds. Fet, V. & Atamuradov, K. I.) Vol. 72 129–148 (Springer Netherlands, 1994).

  • 11.

    Memariani, F., Zarrinpour, V. & Akhani, H. A review of plant diversity, vegetation, and phytogeography of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region (northeastern Iran–southern Turkmenistan). Phytotaxa 249, 8 (2016).

    Article 

    Google Scholar 

  • 12.

    Fet, V. Biogeographic Position of the Khorassan-Kopetdagh. In Biogeography and Ecology of Turkmenistan (eds. Fet, V. & Atamuradov, K. I.) Vol. 72 197–204 (Springer Netherlands, 1994).

  • 13.

    Memariani, F. Khorassan-Kopet Dagh mountains. In Plant Biogeography and Vegetation of High Mountains of Central and South-West Asia (ed. Noroozi, J.) (Springer, 2020). https://datadryad.org/stash/dataset/doi:10.5061/dryad.4sb6383

  • 14.

    Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F. & Mesdaghi, M. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE 15, e0237527 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Erfanian, M. B. et al. Data from: Plant community responses to environmentally-friendly piste management in northeast Iran. Dryad Dataset. https://datadryad.org/stash/dataset/doi:10.5061/dryad.4sb6383 (2019).

  • 16.

    Jamzad, Z. Flora of Iran vol. 76 Lamiaceae. (Research Institute of Forests & Rangelands, 2012).

  • 17.

    Sagharyan, M., Ganjeali, A. & Cheniany, M. Investigating the effect of antioxidant compounds and various concentrations of BAP and NAA on the improvement of in vitro stem and root formation of Nepeta binaloudensis Jamzad. NBR 6, 198–205 (2019).

    Article 

    Google Scholar 

  • 18.

    Nadjafi, F., Koocheki, A., Moghaddam, P. R. & Rastgoo, M. Ethnopharmacology of Nepeta binaludensis Jamzad a highly threatened medicinal plant of Iran. J. Med. Plants 8, 29–35 (2009).

    Google Scholar 

  • 19.

    Nadjafi, F., Koocheki, A., Honermeier, B. & Asili, J. Autecology, ethnomedicinal and phytochemical studies of Nepeta binaludensis Jamzad a highly endangered medicinal plant of Iran. J. Essent. Oil Bear. Plants 12, 97–110 (2009).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Memariani, F., Akhani, H. & Joharchi, M. R. Endemic plants of Khorassan-Kopet Dagh floristic province in Irano-Turanian region: Diversity, distribution patterns and conservation status. Phytotaxa 249, 31 (2016).

    Article 

    Google Scholar 

  • 21.

    Salmaki, Y. & Joharchi, M. R. Phlomoides binaludensis (Phlomideae, Lamioideae, Lamiaceae), a new species from northeastern Iran. Phytotaxa 172, 265 (2014).

    Article 

    Google Scholar 

  • 22.

    Pahlevani, A. H., Liede-Schumann, S. & Akhani, H. Seed and capsule morphology of Iranian perennial species of Euphorbia (Euphorbiaceae) and its phylogenetic application: Perennial Species of Euphorbia in Iran. Bot. J. Linn. Soc. 177, 335–377 (2015).

    Article 

    Google Scholar 

  • 23.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).

    Article 

    Google Scholar 

  • 24.

    Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).

    Article 

    Google Scholar 

  • 25.

    Farashi, A., Shariati, M. & Hosseini, M. Identifying biodiversity hotspots for threatened mammal species in Iran. Mamm. Biol. 87, 71–88 (2017).

    Article 

    Google Scholar 

  • 26.

    Hosseinzadeh, M. S., Fois, M., Zangi, B. & Kazemi, S. M. Predicting past, current and future habitat suitability and geographic distribution of the Iranian endemic species Microgecko latifi (Sauria: Gekkonidae). J. Arid Environ. 183, 104283 (2020).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Noroozi, J. et al. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9, 12991 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Erfanian, M. B., Ejtehadi, H., Vaezi, J. & Moazzeni, H. Plant community responses to multiple disturbances in an arid region of northeast Iran. Land Degrad. Dev. 30, 1554–1563 (2019).

    Article 

    Google Scholar 

  • 29.

    Erfanian, M. B. et al. Plant community responses to environmentally friendly piste management in northeast Iran. Ecol. Evol. 9, 8193–8200 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Memariani, F. et al. Plant diversity of the Khorassan-Kopet Dagh Floristic Province (Irano-Turanian Region). (Magnolia Press, 2016)

  • 31.

    Memariani, F., Joharchi, M. R., Ejtehadi, H. & Emadzade, K. A contribution to the flora and vegetation of Binalood mountain range, NE Iran: Floristic and chorological studies in Fereizi region. Ferdowsi Univ. Int. J. Biol. Sci. J. Cell Mol. Res. 1, 1–17 (2009).

    Google Scholar 

  • 32.

    Memariani, F. & Joharchi, M. R. Iris ferdowsii (Iridaceae), a new species of section Regelia from northeast of Iran. Phytotaxa 291, 192 (2017).

    Article 

    Google Scholar 

  • 33.

    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R Package. https://cran.r-project.org/package=biomod2 (2019).

  • 34.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 35.

    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Article 

    Google Scholar 

  • 36.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 37.

    Ahmadi, M., Dadashi Roudbari, A. A., Akbari Azirani, T. & Karami, J. The performance of the HadGEM2-ES model in the evaluation of seasonal temperature anomaly of Iran under RCP scenarios. J. Earth Space Phys. 45, 625–644 (2019).

    Google Scholar 

  • 38.

    Dray, S. & Dufour, A.-B. The ade4 Package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article 

    Google Scholar 

  • 39.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).

  • 40.

    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).

    Article 

    Google Scholar 

  • 41.

    Menard, S. W. Applied Logistic Regression Analysis (Sage Publications, Thousand Oaks, 2002).

    Book 

    Google Scholar 

  • 42.

    Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159 (1977).

    CAS 
    MATH 
    Article 

    Google Scholar 

  • 43.

    Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).

    Article 

    Google Scholar 

  • 45.

    Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 60, 101150 (2020).

    Article 

    Google Scholar 

  • 46.

    Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558 (2020).

    Article 

    Google Scholar 

  • 47.

    Abdelaal, M., Fois, M., Fenu, G. & Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép, Egypt. Ecol. Inform. 50, 68–75 (2019).

    Article 

    Google Scholar 

  • 48.

    Thuiller, W. et al. Endemic species and ecosystem sensitivity to climate change in Namibia. Glob. Change Biol. 12, 759–776 (2006).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Chitale, V. S., Behera, M. D. & Roy, P. S. Future of endemic flora of biodiversity hotspots in India. PLoS ONE 9, e115264 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Fois, M., Bacchetta, G., Cogoni, D. & Fenu, G. Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: A nice and complex strategy in its raw state?. J. Environ. Plan. Manag. 61, 332–347 (2018).

    Article 

    Google Scholar 

  • 51.

    Mamet, S. D., Brown, C. D., Trant, A. J. & Laroque, C. P. Shifting global Larix distributions: Northern expansion and southern retraction as species respond to changing climate. J. Biogeogr. 46, 30–44 (2019).

    Article 

    Google Scholar 

  • 52.

    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change: Predicting species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).

    Article 

    Google Scholar 

  • 53.

    Hosseini, S. S., Ejtehadi, H. & Memariani, F. The first report Nepeta binaloudensis Jamzad in Hezar masjed mountains of Khorasan Razavi province. In Proceedings of the 9th National Congress and 7th International Congrees of Bilogy of Iran (2016).

  • 54.

    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Casazza, G. et al. Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol. Conserv. 179, 129–138 (2014).

    Article 

    Google Scholar 

  • 57.

    Zhang, M.-G. et al. Major declines of woody plant species ranges under climate change in Yunnan, China. Divers. Distrib. 20, 405–415 (2014).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Sanjerehei, M. M. & Rundel, P. W. The impact of climate change on habitat suitability for Artemisia sieberi and Artemisia aucheri (Asteraceae)—A modeling approach. Pol. J. Ecol. 65, 97–109 (2017).

    Article 

    Google Scholar 

  • 59.

    Abolmaali, S.M.-R., Tarkesh, M. & Bashari, H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 43, 116–123 (2018).

    Article 

    Google Scholar 

  • 60.

    Di Musciano, M. et al. Dispersal ability of threatened species affects future distributions. Plant Ecol. 221, 265–281 (2020).

    Article 

    Google Scholar 

  • 61.

    Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D. & Bacchetta, G. The reliability of conservation status assessments at regional level: Past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J. Nat. Conserv. 33, 1–9 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings

    How to get salt out of water: Make it self-eject