in

Prey removal in cotton crops next to woodland reveals periodic diurnal and nocturnal invertebrate predation gradients from the crop edge by birds and bats

  • 1.

    FAO. United Nations Food Agricultural Organisation. High Level Expert Forum (FAO, Rome, 2009).

    Google Scholar 

  • 2.

    Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245. https://doi.org/10.1016/j.mambio.2015.03.008 (2015).

    Article  Google Scholar 

  • 3.

    Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4, 238–243. https://doi.org/10.1890/1540-9295(2006)004[0238:Evotpc]2.0.Co;2 (2006).

    Article  Google Scholar 

  • 4.

    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Conservation. Economic importance of bats in agriculture. Science 332, 41–42. https://doi.org/10.1126/science.1201366 (2011).

    Article  PubMed  ADS  Google Scholar 

  • 5.

    Naylor, R. L. & Ehrlich, P. R. In Nature’s Services: Societal Dependence on Natural Ecosystems (ed. Daily, G. C.) 151–174 (Island Press, New York, 1997).

    Google Scholar 

  • 6.

    Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:Tevoes]2.0.Co;2 (2006).

    Article  Google Scholar 

  • 7.

    Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B 365, 2959–2971. https://doi.org/10.1098/rstb.2010.0143 (2010).

    Article  Google Scholar 

  • 8.

    Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. U.S.A. 112, 12438–12443. https://doi.org/10.1073/pnas.1505413112 (2015).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 9.

    Tremblay, A., Mineau, P. & Stewart, R. K. Effects of bird predation on some pest insect populations in corn. Agric. Ecosyst. Environ. 83, 143–152. https://doi.org/10.1016/S0167-8809(00)00247-4 (2001).

    Article  Google Scholar 

  • 10.

    Van Bael, S. A. et al. Birds as predators in tropical agroforestry systems. Ecology 89, 928–934 (2008).

    Article  Google Scholar 

  • 11.

    Grass, I., Lehmann, K., Thies, C. & Tscharntke, T. Insectivorous birds disrupt biological control of cereal aphids. Ecology 98, 1583–1590. https://doi.org/10.1002/ecy.1814 (2017).

    Article  PubMed  Google Scholar 

  • 12.

    Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347. https://doi.org/10.1111/ele.12173 (2013).

    Article  PubMed  Google Scholar 

  • 13.

    Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. Camb. Philos. Soc. 91, 1081–1101. https://doi.org/10.1111/brv.12211 (2016).

    Article  PubMed  Google Scholar 

  • 14.

    Cohen, Y., Bar-David, S., Nielsen, M., Bohmann, K. & Korine, C. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Mol. Ecol. 29, 1185–1198. https://doi.org/10.1111/mec.15393 (2020).

    Article  PubMed  Google Scholar 

  • 15.

    Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212. https://doi.org/10.1016/j.agee.2013.10.007 (2013).

    Article  Google Scholar 

  • 16.

    Speakman, J. R. & Thomas, D. W. In Bat ecology (eds Kunz, T. H. & Fenton, M. B.) 430–490 (University of Chicago Press, Chicago, 2003).

    Google Scholar 

  • 17.

    Norberg, U. M. Avian Energetics and Nutritional Ecology 199–249 (Springer, Berlin, 1996).

    Google Scholar 

  • 18.

    Nyffeler, M., Şekercioğlu, Ç. H. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47. https://doi.org/10.1007/s00114-018-1571-z (2018).

    CAS  Article  Google Scholar 

  • 19.

    Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).

    Article  PubMed  Google Scholar 

  • 20.

    Mols, C. M. M. & Visser, M. E. Great tits can reduce caterpillar damage in apple orchards. J. Appl. Ecol. 39, 888–899. https://doi.org/10.1046/j.1365-2664.2002.00761.x (2002).

    Article  Google Scholar 

  • 21.

    Van Bael, S. A., Bichier, P. & Greenberg, R. Bird predation on insects reduces damage to the foliage of cocoa trees (Theobroma cacao) in western Panama. J. Trop. Ecol. 23, 715–719. https://doi.org/10.1017/s0266467407004440 (2007).

    Article  Google Scholar 

  • 22.

    Federico, P. et al. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol. Appl. 18, 826–837. https://doi.org/10.1890/07-0556.1 (2008).

    Article  PubMed  Google Scholar 

  • 23.

    McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7, e43839. https://doi.org/10.1371/journal.pone.0043839 (2012).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 24.

    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10, 371–388. https://doi.org/10.1002/ece3.5901 (2020).

    Article  PubMed  Google Scholar 

  • 25.

    Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487. https://doi.org/10.1111/ele.12194 (2013).

    Article  PubMed  Google Scholar 

  • 26.

    Kalka, M. B., Smith, A. R. & Kalko, E. K. Bats limit arthropods and herbivory in a tropical forest. Science 320, 71. https://doi.org/10.1126/science.1153352 (2008).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 27.

    Williams-Guillen, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a neotropical agroforestry system. Science 320, 70. https://doi.org/10.1126/science.1152944 (2008).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 28.

    Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 1–38 (New York Academy of Sciences, New York, 2011).

    Google Scholar 

  • 29.

    Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services: A review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381. https://doi.org/10.1016/j.ecoser.2017.11.015 (2018).

    Article  Google Scholar 

  • 30.

    Redlich, S., Martin Emily, A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13126 (2018).

    Article  Google Scholar 

  • 31.

    Hooks, C., Pandey, R. R., & Johnson, M. W. Unlikely guardians of cropping systems: Can birds and spiders protect broccoli from caterpillar pests? Insect Pests (2007).

  • 32.

    Martin, E. A., Reineking, B., Seo, B. & Steffan-Dewenter, I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. U.S.A. 110, 5534–5539. https://doi.org/10.1073/pnas.1215725110 (2013).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 33.

    Karp, D. S. & Daily, G. C. Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95, 1065–1074. https://doi.org/10.1890/13-1012.1 (2014).

    Article  PubMed  Google Scholar 

  • 34.

    Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. Appl. Ecol. 54, 500–508. https://doi.org/10.1111/1365-2664.12740 (2017).

    Article  Google Scholar 

  • 35.

    Rey Benayas, J. M., Meltzer, J., de las Heras-Bravo, D. & Cayuela, L. Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLoS ONE 12, 15. https://doi.org/10.1371/journal.pone.0180702 (2017).

    CAS  Article  Google Scholar 

  • 36.

    Morrison, E. B. & Lindell, C. A. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol. Appl. 22, 1526–1534 (2012).

    Article  Google Scholar 

  • 37.

    Ndanganga, P. K., Njoroge, J. B. M. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manage. https://doi.org/10.1080/09670874.2013.820005 (2013).

    Article  Google Scholar 

  • 38.

    Tschumi, M., Ekroos, J., Hjort, C., Smith, H. G. & Birkhofer, K. Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188, 863–873. https://doi.org/10.1007/s00442-018-4242-z (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 39.

    Elkinton, J. S., Liebhold, A. M. & Muzika, R.-M. Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul. Ecol. 46, 171–178. https://doi.org/10.1007/s10144-004-0175-y (2004).

    Article  Google Scholar 

  • 40.

    Dyrcz, A. Breeding biology and behaviour of the willie wagtail (Rhipidura leucophrys) in the madang region Papua New Guinea. Emu 94, 17–26. https://doi.org/10.1071/MU9940017 (1994).

    Article  Google Scholar 

  • 41.

    Adriano, S. & Calver, M. C. Diet of breeding willie wagtails (Rhipidura leucophrys) in suburban Western Australia. Emu 95, 138–141. https://doi.org/10.1071/MU9950138 (1995).

    Article  Google Scholar 

  • 42.

    Razeng, E. & Watson, D. M. What do declining woodland birds eat? A synthesis of dietary records. Emu 112, 149–156. https://doi.org/10.1071/MU11099 (2012).

    Article  Google Scholar 

  • 43.

    Brandl, R., Kristín, A. & Leisler, B. Dietary niche breadth in a local community of passerine birds: An analysis using phylogenetic contrasts. Oecologia 98, 109–116. https://doi.org/10.1007/bf00326096 (1994).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 44.

    Kaplan, G. Australian Magpie: Biology and Behaviour of an Unusual Songbird (CSIRO Publishing, Clayton, 2019).

    Google Scholar 

  • 45.

    Puckett, H. L., Brandle, J. R. & Johnson, R. J. Avian foraging patterns in crop field edges adjacent to woody habitat. Agric. Ecosyst. Environ. 131, 9–15 (2009).

    Article  Google Scholar 

  • 46.

    Best, L. B., Whitmore, R. C. & Booth, G. M. Use of cornfields by birds during the breeding season: the importance of edge habitat. Am. Midl. Nat. 123, 84–99. https://doi.org/10.2307/2425762 (1990).

    Article  Google Scholar 

  • 47.

    Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).

    Article  Google Scholar 

  • 48.

    Storch, I., Woitke, E. & Krieger, S. Landscape-scale edge effect in predation risk in forest-farmland mosaics of Central Europe. Landsc. Ecol. 20, 927–940. https://doi.org/10.1007/s10980-005-7005-2 (2005).

    Article  Google Scholar 

  • 49.

    Douglas, D. J. T., Vickery, J. A. & Benton, T. G. Improving the value of field margins as foraging habitat for farmland birds. J. Appl. Ecol. 46, 353–362. https://doi.org/10.1111/j.1365-2664.2009.01613.x (2009).

    Article  Google Scholar 

  • 50.

    Stephens, D. W. & Krebs, J. R. Foraging Theory (University Press, 1986).

    Google Scholar 

  • 51.

    Denzinger, A. & Schnitzler, H.-U. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4, 164. https://doi.org/10.3389/fphys.2013.00164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Schnitzler, H.-U. & Kalko, E. K. V. Echolocation by insect-eating bats. Vol. 51 (SPIE, 2001).

  • 53.

    Neuweiler, G. Foraging, echolocation and audition in bats. Naturwissenschaften 71, 446–455. https://doi.org/10.1007/BF00455897 (1984).

    Article  ADS  Google Scholar 

  • 54.

    Fenton, M. B. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68, 411–422. https://doi.org/10.1139/z90-061 (1990).

    Article  Google Scholar 

  • 55.

    Jantzen, M. K. & Fenton, M. B. The depth of edge influence among insectivorous bats at forest–field interfaces. Can. J. Zool. 91, 287–292. https://doi.org/10.1139/cjz-2012-0282 (2013).

    Article  Google Scholar 

  • 56.

    Estur, G. Cotton Exporter’s Guide. (International Trade Centre UNCTAD/WTO, 2007).

  • 57.

    RBG In State of the World’s Plants 2017 (ed. Willis, K.) 64–71 (Board of Trustees of the Royal Botanic Gardens, Kew, 2017).

    Google Scholar 

  • 58.

    Rencken, I. An Investigation of the Importance of Native and Non-Crop Vegetation to Beneficial Generalist Predators in Australian Cotton Agroecosystems PhD thesis, University of New England (2006).

  • 59.

    Holloway, J. C., Furlong, M. J. & Bowden, P. I. Management of beneficial invertebrates and their potential role in integrated pest management for Australian grain systems. Aust. J. Exp. Agric. 48, 1531–1542. https://doi.org/10.1071/EA07424 (2008).

    Article  Google Scholar 

  • 60.

    Schellhorn, N. A., Bianchi, F. J. & Hsu, C. L. Movement of entomophagous arthropods in agricultural landscapes: Links to pest suppression. Annu. Rev. Entomol. 59, 559–581. https://doi.org/10.1146/annurev-ento-011613-161952 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Whitehouse, M. E. A., Wilson, L. J. & Fitt, G. P. A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ. Entomol. 34, 1224–1241 (2005).

    Article  Google Scholar 

  • 62.

    Smith, R., Reid, J., Scott-Morales, L., Green, S. & Reid, N. A baseline survey of birds in native vegetation on cotton farms in inland eastern Australia. Wildl. Res. 46, 304–316. https://doi.org/10.1071/WR18038 (2019).

    Article  Google Scholar 

  • 63.

    Ford, G. & Thomson, N. Birds on Cotton Farms: A Guide to Common Species and Habitat Management (Cotton Catchment Communities CRC, Boca Raton, 2006).

    Google Scholar 

  • 64.

    Whelan, C. J., Wenny, D. G. & Marquis, R. J. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 25–60 (Annals of the New York Academy of Sciences, New York, 2008).

    Google Scholar 

  • 65.

    Rodríguez, A., Andrén, H. & Jansson, G. Habitat-mediated predation risk and decision making of small birds at forest edges. Oikos 95, 383–396 (2001).

    Article  Google Scholar 

  • 66.

    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161. https://doi.org/10.1007/s10336-012-0869-4 (2012).

    Article  Google Scholar 

  • 67.

    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782. https://doi.org/10.1002/ecy.2378 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Nelson, J. J. & Gillam, E. H. Selection of foraging habitat by female little brown bats (Myotis lucifugus). J. Mammal. 98, 222–231. https://doi.org/10.1093/jmammal/gyw181 (2016).

    Article  Google Scholar 

  • 69.

    Rohner, C. & Krebs, C. J. Owl predation on snowshoe hares: Consequences of antipredator behaviour. Oecologia 108, 303–310. https://doi.org/10.1007/bf00334655 (1996).

    Article  PubMed  ADS  Google Scholar 

  • 70.

    Rockwell, C., Gabriel, P. O. & Black, J. M. Bolder, older, and selective: Factors of individual-specific foraging behaviors in Steller’s jays. Behav. Ecol. 23, 676–683. https://doi.org/10.1093/beheco/ars015 (2012).

    Article  Google Scholar 

  • 71.

    Krebs, J. R. In Perspectives in Ethology (eds Bateson, P. P. G. & Klopfer, P. H.) 73–111 (Springer US, Berlin, 1973).

    Google Scholar 

  • 72.

    Lövei, G. L. & Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24, 528–542. https://doi.org/10.1111/1744-7917.12405 (2017).

    Article  PubMed  Google Scholar 

  • 73.

    Nagy, R. K., Schellhorn, N. A. & Zalucki, M. P. Fresh, frozen or fake: A comparison of predation rates measured by various types of sentinel prey. J. Appl. Entomol. 144, 407–416. https://doi.org/10.1111/jen.12745 (2020).

    Article  Google Scholar 

  • 74.

    Ravzanaadii, N., Kim, S.-H., Choi, W. H., Seong-Jin, H. & Kim, N. J. Nutritional value of mealworm, tenebrio molitor as food source. Int. J. Ind. Ergon. 25, 93–98 (2012).

    Google Scholar 

  • 75.

    Barbaro, L., Giffard, B., Charbonnier, Y., van Halder, I. & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: A transcontinental experiment. Divers. Distrib. 20, 149–159. https://doi.org/10.1111/ddi.12132 (2014).

    Article  Google Scholar 

  • 76.

    Environment Australia. Revision of the Interim Biogeographic Regionalisation of Australia (IBRA) and Development of Version 5.0: Summary Report. (Department of Environment and Heritage, Canberra, 2000).

  • 77.

    OEH. NSW (Mitchell) Landscapes. Vol. version 3.1 (State of New South Wales and Office of Environment and Heritage 2002).

  • 78.

    Keith, D. A. Ocean Shores to Desert Dunes: The Native Vegetation of NEW South Wales and the ACT (Department of Environment and Conservation, 2004).

    Google Scholar 

  • 79.

    R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, 2018).

  • 80.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 400. https://doi.org/10.3929/ethz-b-000240890 (2017).

    Article  Google Scholar 

  • 81.

    Lüdecke, D. ggeffects: Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs (v0.16.0). https://CRAN.R-project.org/package=ggeffects. (2017).

  • 82.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/mixed) Regression Models (v0.3.3). https://CRAN.R-project.org/package=DHARMa (2017).

  • 83.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Estimated Marginal Means, aka Least-Squares Means (v1.5.3). https://www.rdocumentation.org/packages/emmeans (2019).

  • 84.

    Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19, 227–229 (2010).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific