FAO. United Nations Food Agricultural Organisation. High Level Expert Forum (FAO, Rome, 2009).
Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245. https://doi.org/10.1016/j.mambio.2015.03.008 (2015).
Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4, 238–243. https://doi.org/10.1890/1540-9295(2006)004[0238:Evotpc]2.0.Co;2 (2006).
Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Conservation. Economic importance of bats in agriculture. Science 332, 41–42. https://doi.org/10.1126/science.1201366 (2011).
Naylor, R. L. & Ehrlich, P. R. In Nature’s Services: Societal Dependence on Natural Ecosystems (ed. Daily, G. C.) 151–174 (Island Press, New York, 1997).
Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:Tevoes]2.0.Co;2 (2006).
Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B 365, 2959–2971. https://doi.org/10.1098/rstb.2010.0143 (2010).
Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. U.S.A. 112, 12438–12443. https://doi.org/10.1073/pnas.1505413112 (2015).
Tremblay, A., Mineau, P. & Stewart, R. K. Effects of bird predation on some pest insect populations in corn. Agric. Ecosyst. Environ. 83, 143–152. https://doi.org/10.1016/S0167-8809(00)00247-4 (2001).
Van Bael, S. A. et al. Birds as predators in tropical agroforestry systems. Ecology 89, 928–934 (2008).
Grass, I., Lehmann, K., Thies, C. & Tscharntke, T. Insectivorous birds disrupt biological control of cereal aphids. Ecology 98, 1583–1590. https://doi.org/10.1002/ecy.1814 (2017).
Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347. https://doi.org/10.1111/ele.12173 (2013).
Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. Camb. Philos. Soc. 91, 1081–1101. https://doi.org/10.1111/brv.12211 (2016).
Cohen, Y., Bar-David, S., Nielsen, M., Bohmann, K. & Korine, C. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Mol. Ecol. 29, 1185–1198. https://doi.org/10.1111/mec.15393 (2020).
Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212. https://doi.org/10.1016/j.agee.2013.10.007 (2013).
Speakman, J. R. & Thomas, D. W. In Bat ecology (eds Kunz, T. H. & Fenton, M. B.) 430–490 (University of Chicago Press, Chicago, 2003).
Norberg, U. M. Avian Energetics and Nutritional Ecology 199–249 (Springer, Berlin, 1996).
Nyffeler, M., Şekercioğlu, Ç. H. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47. https://doi.org/10.1007/s00114-018-1571-z (2018).
Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).
Mols, C. M. M. & Visser, M. E. Great tits can reduce caterpillar damage in apple orchards. J. Appl. Ecol. 39, 888–899. https://doi.org/10.1046/j.1365-2664.2002.00761.x (2002).
Van Bael, S. A., Bichier, P. & Greenberg, R. Bird predation on insects reduces damage to the foliage of cocoa trees (Theobroma cacao) in western Panama. J. Trop. Ecol. 23, 715–719. https://doi.org/10.1017/s0266467407004440 (2007).
Federico, P. et al. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol. Appl. 18, 826–837. https://doi.org/10.1890/07-0556.1 (2008).
McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7, e43839. https://doi.org/10.1371/journal.pone.0043839 (2012).
Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10, 371–388. https://doi.org/10.1002/ece3.5901 (2020).
Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487. https://doi.org/10.1111/ele.12194 (2013).
Kalka, M. B., Smith, A. R. & Kalko, E. K. Bats limit arthropods and herbivory in a tropical forest. Science 320, 71. https://doi.org/10.1126/science.1153352 (2008).
Williams-Guillen, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a neotropical agroforestry system. Science 320, 70. https://doi.org/10.1126/science.1152944 (2008).
Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 1–38 (New York Academy of Sciences, New York, 2011).
Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services: A review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381. https://doi.org/10.1016/j.ecoser.2017.11.015 (2018).
Redlich, S., Martin Emily, A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13126 (2018).
Hooks, C., Pandey, R. R., & Johnson, M. W. Unlikely guardians of cropping systems: Can birds and spiders protect broccoli from caterpillar pests? Insect Pests (2007).
Martin, E. A., Reineking, B., Seo, B. & Steffan-Dewenter, I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. U.S.A. 110, 5534–5539. https://doi.org/10.1073/pnas.1215725110 (2013).
Karp, D. S. & Daily, G. C. Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95, 1065–1074. https://doi.org/10.1890/13-1012.1 (2014).
Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. Appl. Ecol. 54, 500–508. https://doi.org/10.1111/1365-2664.12740 (2017).
Rey Benayas, J. M., Meltzer, J., de las Heras-Bravo, D. & Cayuela, L. Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLoS ONE 12, 15. https://doi.org/10.1371/journal.pone.0180702 (2017).
Morrison, E. B. & Lindell, C. A. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol. Appl. 22, 1526–1534 (2012).
Ndanganga, P. K., Njoroge, J. B. M. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manage. https://doi.org/10.1080/09670874.2013.820005 (2013).
Tschumi, M., Ekroos, J., Hjort, C., Smith, H. G. & Birkhofer, K. Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188, 863–873. https://doi.org/10.1007/s00442-018-4242-z (2018).
Elkinton, J. S., Liebhold, A. M. & Muzika, R.-M. Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul. Ecol. 46, 171–178. https://doi.org/10.1007/s10144-004-0175-y (2004).
Dyrcz, A. Breeding biology and behaviour of the willie wagtail (Rhipidura leucophrys) in the madang region Papua New Guinea. Emu 94, 17–26. https://doi.org/10.1071/MU9940017 (1994).
Adriano, S. & Calver, M. C. Diet of breeding willie wagtails (Rhipidura leucophrys) in suburban Western Australia. Emu 95, 138–141. https://doi.org/10.1071/MU9950138 (1995).
Razeng, E. & Watson, D. M. What do declining woodland birds eat? A synthesis of dietary records. Emu 112, 149–156. https://doi.org/10.1071/MU11099 (2012).
Brandl, R., Kristín, A. & Leisler, B. Dietary niche breadth in a local community of passerine birds: An analysis using phylogenetic contrasts. Oecologia 98, 109–116. https://doi.org/10.1007/bf00326096 (1994).
Kaplan, G. Australian Magpie: Biology and Behaviour of an Unusual Songbird (CSIRO Publishing, Clayton, 2019).
Puckett, H. L., Brandle, J. R. & Johnson, R. J. Avian foraging patterns in crop field edges adjacent to woody habitat. Agric. Ecosyst. Environ. 131, 9–15 (2009).
Best, L. B., Whitmore, R. C. & Booth, G. M. Use of cornfields by birds during the breeding season: the importance of edge habitat. Am. Midl. Nat. 123, 84–99. https://doi.org/10.2307/2425762 (1990).
Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).
Storch, I., Woitke, E. & Krieger, S. Landscape-scale edge effect in predation risk in forest-farmland mosaics of Central Europe. Landsc. Ecol. 20, 927–940. https://doi.org/10.1007/s10980-005-7005-2 (2005).
Douglas, D. J. T., Vickery, J. A. & Benton, T. G. Improving the value of field margins as foraging habitat for farmland birds. J. Appl. Ecol. 46, 353–362. https://doi.org/10.1111/j.1365-2664.2009.01613.x (2009).
Stephens, D. W. & Krebs, J. R. Foraging Theory (University Press, 1986).
Denzinger, A. & Schnitzler, H.-U. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4, 164. https://doi.org/10.3389/fphys.2013.00164 (2013).
Schnitzler, H.-U. & Kalko, E. K. V. Echolocation by insect-eating bats. Vol. 51 (SPIE, 2001).
Neuweiler, G. Foraging, echolocation and audition in bats. Naturwissenschaften 71, 446–455. https://doi.org/10.1007/BF00455897 (1984).
Fenton, M. B. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68, 411–422. https://doi.org/10.1139/z90-061 (1990).
Jantzen, M. K. & Fenton, M. B. The depth of edge influence among insectivorous bats at forest–field interfaces. Can. J. Zool. 91, 287–292. https://doi.org/10.1139/cjz-2012-0282 (2013).
Estur, G. Cotton Exporter’s Guide. (International Trade Centre UNCTAD/WTO, 2007).
RBG In State of the World’s Plants 2017 (ed. Willis, K.) 64–71 (Board of Trustees of the Royal Botanic Gardens, Kew, 2017).
Rencken, I. An Investigation of the Importance of Native and Non-Crop Vegetation to Beneficial Generalist Predators in Australian Cotton Agroecosystems PhD thesis, University of New England (2006).
Holloway, J. C., Furlong, M. J. & Bowden, P. I. Management of beneficial invertebrates and their potential role in integrated pest management for Australian grain systems. Aust. J. Exp. Agric. 48, 1531–1542. https://doi.org/10.1071/EA07424 (2008).
Schellhorn, N. A., Bianchi, F. J. & Hsu, C. L. Movement of entomophagous arthropods in agricultural landscapes: Links to pest suppression. Annu. Rev. Entomol. 59, 559–581. https://doi.org/10.1146/annurev-ento-011613-161952 (2014).
Whitehouse, M. E. A., Wilson, L. J. & Fitt, G. P. A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ. Entomol. 34, 1224–1241 (2005).
Smith, R., Reid, J., Scott-Morales, L., Green, S. & Reid, N. A baseline survey of birds in native vegetation on cotton farms in inland eastern Australia. Wildl. Res. 46, 304–316. https://doi.org/10.1071/WR18038 (2019).
Ford, G. & Thomson, N. Birds on Cotton Farms: A Guide to Common Species and Habitat Management (Cotton Catchment Communities CRC, Boca Raton, 2006).
Whelan, C. J., Wenny, D. G. & Marquis, R. J. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 25–60 (Annals of the New York Academy of Sciences, New York, 2008).
Rodríguez, A., Andrén, H. & Jansson, G. Habitat-mediated predation risk and decision making of small birds at forest edges. Oikos 95, 383–396 (2001).
Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161. https://doi.org/10.1007/s10336-012-0869-4 (2012).
Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782. https://doi.org/10.1002/ecy.2378 (2018).
Nelson, J. J. & Gillam, E. H. Selection of foraging habitat by female little brown bats (Myotis lucifugus). J. Mammal. 98, 222–231. https://doi.org/10.1093/jmammal/gyw181 (2016).
Rohner, C. & Krebs, C. J. Owl predation on snowshoe hares: Consequences of antipredator behaviour. Oecologia 108, 303–310. https://doi.org/10.1007/bf00334655 (1996).
Rockwell, C., Gabriel, P. O. & Black, J. M. Bolder, older, and selective: Factors of individual-specific foraging behaviors in Steller’s jays. Behav. Ecol. 23, 676–683. https://doi.org/10.1093/beheco/ars015 (2012).
Krebs, J. R. In Perspectives in Ethology (eds Bateson, P. P. G. & Klopfer, P. H.) 73–111 (Springer US, Berlin, 1973).
Lövei, G. L. & Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24, 528–542. https://doi.org/10.1111/1744-7917.12405 (2017).
Nagy, R. K., Schellhorn, N. A. & Zalucki, M. P. Fresh, frozen or fake: A comparison of predation rates measured by various types of sentinel prey. J. Appl. Entomol. 144, 407–416. https://doi.org/10.1111/jen.12745 (2020).
Ravzanaadii, N., Kim, S.-H., Choi, W. H., Seong-Jin, H. & Kim, N. J. Nutritional value of mealworm, tenebrio molitor as food source. Int. J. Ind. Ergon. 25, 93–98 (2012).
Barbaro, L., Giffard, B., Charbonnier, Y., van Halder, I. & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: A transcontinental experiment. Divers. Distrib. 20, 149–159. https://doi.org/10.1111/ddi.12132 (2014).
Environment Australia. Revision of the Interim Biogeographic Regionalisation of Australia (IBRA) and Development of Version 5.0: Summary Report. (Department of Environment and Heritage, Canberra, 2000).
OEH. NSW (Mitchell) Landscapes. Vol. version 3.1 (State of New South Wales and Office of Environment and Heritage 2002).
Keith, D. A. Ocean Shores to Desert Dunes: The Native Vegetation of NEW South Wales and the ACT (Department of Environment and Conservation, 2004).
R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, 2018).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 400. https://doi.org/10.3929/ethz-b-000240890 (2017).
Lüdecke, D. ggeffects: Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs (v0.16.0). https://CRAN.R-project.org/package=ggeffects. (2017).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/mixed) Regression Models (v0.3.3). https://CRAN.R-project.org/package=DHARMa (2017).
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Estimated Marginal Means, aka Least-Squares Means (v1.5.3). https://www.rdocumentation.org/packages/emmeans (2019).
Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19, 227–229 (2010).
Source: Ecology - nature.com