Kildow, J. T. & McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 34, 367–374 (2010).
Google Scholar
Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).
Google Scholar
Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).
Google Scholar
National Marine Fisheries Service. Fisheries Economics of the United States, 2016. US Dept. of Commerce, NOAA Tech. Memo. NMFS-F/SPO-187 (2018).
Jennings, S., Lee, J. & Hiddink, J. G. Assessing fishery footprints and the trade-offs between landings value, habitat sensitivity, and fishing impacts to inform marine spatial planning and an ecosystem approach. ICES J. Mar. Sci. 69, 1053–1063 (2012).
Google Scholar
Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).
Google Scholar
Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).
Google Scholar
Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).
Google Scholar
Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).
Google Scholar
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).
Google Scholar
Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).
Google Scholar
Marshall, K. N. et al. Ecosystem-based fisheries management for social–ecological systems: Renewing the focus in the United States with next generation fishery ecosystem plans. Conserv. Lett. 11, e12367 (2018).
Google Scholar
Link, J. Ecosystem-Based Fisheries Management: Confronting Tradeoffs (Cambridge University Press, 2010).
Google Scholar
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
Google Scholar
Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).
Google Scholar
Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).
Google Scholar
Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).
Google Scholar
Murawski, S. A. Definitions of overfishing from an ecosystem perspective. ICES J. Mar. Sci. 57, 649–658 (2000).
Google Scholar
Breitburg, D. L. et al. Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management. Hydrobiologia 629, 31–47 (2009).
Google Scholar
Hondorp, D. W., Breitburg, D. L. & Davias, L. A. Eutrophication and fisheries: Separating the effects of nitrogen loads and hypoxia on the pelagic-to-demersal ratio and other measures of landings composition. Mar. Coast. Fish. 2, 339–361 (2010).
Google Scholar
Link, J. S. et al. Emergent properties delineate marine ecosystem perturbation and recovery. Trends Ecol. Evol. 30, 649–661 (2015).
Google Scholar
Tam, J. C. et al. Comparing apples to oranges: Common trends and thresholds in anthropogenic and environmental pressures across multiple marine ecosystems. Front. Mar. Sci. 4, 282 (2017).
Google Scholar
Link, J. S. et al. Marine ecosystem assessment in a fisheries management context. Can. J. Fish. Aquat. Sci. 59, 1429–1440 (2002).
Google Scholar
Garcia, S. M., Rice, J. & Charles, A. Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution (Wiley-Blackwell, 2014).
Google Scholar
Colloca, F. et al. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 14, 89–109 (2013).
Google Scholar
National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management (OCM), NOAA Report on the US Marine Economy. NOAA OCM. 23p. https://coast.noaa.gov/digitalcoast/training/econreport.html (2020).
Teh, L. C. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).
Google Scholar
Laterra, P. et al. How are jobs and ecosystem services linked at the local scale?. Ecosyst. Serv. 35, 207–218 (2019).
Google Scholar
Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).
Google Scholar
Graham, N. A. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).
Google Scholar
Koslow, J. A. & Davison, P. C. Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and-independent time series. Environ. Dev. 17, 23–32 (2016).
Google Scholar
Kahru, M., Kudela, R., Manzano-Sarabia, M. & Mitchell, B. G. Trends in primary production in the California Current detected with satellite data. J. Geophys. Res. Oceans 114, C02004 (2009).
Google Scholar
Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES J. Mar. Sci. 70, 755–767 (2013).
Google Scholar
Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Critical points in ecosystem responses to fishing and environmental pressures. Mar. Ecol. Progr. Ser. 521, 1–17 (2015).
Google Scholar
Fogarty, M. J. & Murawski, S. A. Large-scale disturbance and the structure of marine systems: Fishery impacts on Georges Bank. Ecol. Appl. 8(sp1), S6–S22 (1998).
Google Scholar
Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).
Google Scholar
Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).
Google Scholar
Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).
Google Scholar
Banse, K. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 409–440 (Springer, 1992).
Google Scholar
Murray, C. J. et al. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2 (2019).
Google Scholar
Möllmann, C. Effects of climate change and fisheries on the marine ecosystem of the Baltic Sea. In Oxford Research Encyclopedia of Climate Science (ed. Möllmann, C.) (University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.682.
Google Scholar
Intergovernmental Oceanographic Commission (IOC-UNESCO) and United Nations Environmental Program (UNEP). Large Marine Ecosystems: Status and Trends (United Nations Environment Programme UNEP, 2016).
Sangha, K. K., Stoeckl, N., Crossman, N. & Costanza, R. A state-wide economic assessment of coastal and marine ecosystem services to inform sustainable development policies in the Northern Territory, Australia. Mar. Policy 107, 103595 (2019).
Google Scholar
Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 117, 2218–2224 (2020).
Google Scholar
McGowan, J. A., Bograd, S. J., Lynn, R. J. & Miller, A. J. The biological response to the 1977 regime shift in the California Current. Deep Sea Res. Pt. II 50(14–16), 2567–2582 (2003).
Google Scholar
Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60(2–4), 245–262 (2004).
Google Scholar
Kirkman, S. P. et al. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: A comparative assessment. Fish. Oceanogr. 24(S1), 15–30 (2015).
Google Scholar
Link, J. S., Watson, R. A., Pranovi, F. & Libralato, S. Comparative production of fisheries yields and ecosystem overfishing in African Large Marine Ecosystems. Environ. Devel. 36, 100529 (2020).
Google Scholar
Ye, Y. et al. Rebuilding global fisheries: The World Summit Goal, costs and benefits. Fish Fish. 14, 174–185 (2013).
Google Scholar
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).
Google Scholar
Ding, Q., Chen, X., Hilborn, R. & Chen, Y. Vulnerability to impacts of climate change on marine fisheries and food security. Mar. Policy 83, 55–61 (2017).
Google Scholar
NOAA Fisheries. NMFS Headquarters Ecosystem Based Fisheries Management Implementation Plan (NOAA Fisheries, 2019).
Witherell, D., Pautzke, C. & Fluharty, D. An ecosystem-based approach for Alaska groundfish fisheries. ICES J. Mar. Sci. 57, 771–777 (2000).
Google Scholar
National Aeronautics and Space Administration (NASA). NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data. NASA OB.DAAC, Greenbelt, MD, USA. (2014)
Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).
Google Scholar
Peters, R. et al. Habitat science is a fundamental element in an ecosystem-based fisheries management framework: an update to the Marine Fisheries Habitat Assessment Improvement Plan. US Dept. of Commerce, NOAA. NOAA Tech. Memo. NMFS-F/SPO-181. (2018).
Cannizzaro, J. P. & Carder, K. L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 101, 13–24 (2006).
Google Scholar
Reid, R. N., Almeida, F. P., & Zetlin, C. A. Essential fish habitat source document: Fishery-independent surveys, data sources, and methods. NOAA Tech. Memo. NMFS NE 122. (1999).
Stauffer, G. NOAA Protocols for Groundfish Bottom Trawl Surveys of the Nation’s Fishery Resources. US Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-65. (2004).
National Ocean Economics Program. State of the US Ocean and Coastal Economies 2016 Update. Middlebury Institute of International Studies at Monterey, Center for the Blue Economy. (2016).
Craig, M. T. et al. Status review report of Pacific bluefin tuna (Thunnus orientalis). NOAA Tech. Memo. NMFS-SWFSC-587. (2017).
National Oceanic and Atmospheric Administration (NOAA). Spatial trends in coastal socioeconomics (STICS): Coastal county definitions. NOAA. 12p. https://coast.noaa.gov/htdata/SocioEconomic/NOAA_CoastalCountyDefinitions.pdf (2013).
National Oceanic and Atmospheric Administration (NOAA). NOAA Office of Coast Survey maritime zones of the United States. NOAA. (2021). https://nauticalcharts.noaa.gov/data/us-maritime-limits-and-boundaries.html.
Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 1–9 (2017).
Google Scholar
NOAA Fisheries. National marine fisheries service—2nd quarter 2017 update. NOAA Fisheries 53p. (2017).
Source: Ecology - nature.com