in

Primary production ultimately limits fisheries economic performance

  • 1.

    Kildow, J. T. & McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 34, 367–374 (2010).

    Article 

    Google Scholar 

  • 2.

    Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).

    Article 

    Google Scholar 

  • 4.

    National Marine Fisheries Service. Fisheries Economics of the United States, 2016. US Dept. of Commerce, NOAA Tech. Memo. NMFS-F/SPO-187 (2018).

  • 5.

    Jennings, S., Lee, J. & Hiddink, J. G. Assessing fishery footprints and the trade-offs between landings value, habitat sensitivity, and fishing impacts to inform marine spatial planning and an ecosystem approach. ICES J. Mar. Sci. 69, 1053–1063 (2012).

    Article 

    Google Scholar 

  • 6.

    Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).

    Article 

    Google Scholar 

  • 12.

    Marshall, K. N. et al. Ecosystem-based fisheries management for social–ecological systems: Renewing the focus in the United States with next generation fishery ecosystem plans. Conserv. Lett. 11, e12367 (2018).

    Article 

    Google Scholar 

  • 13.

    Link, J. Ecosystem-Based Fisheries Management: Confronting Tradeoffs (Cambridge University Press, 2010).

    Book 

    Google Scholar 

  • 14.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article 

    Google Scholar 

  • 15.

    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Murawski, S. A. Definitions of overfishing from an ecosystem perspective. ICES J. Mar. Sci. 57, 649–658 (2000).

    Article 

    Google Scholar 

  • 19.

    Breitburg, D. L. et al. Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management. Hydrobiologia 629, 31–47 (2009).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Hondorp, D. W., Breitburg, D. L. & Davias, L. A. Eutrophication and fisheries: Separating the effects of nitrogen loads and hypoxia on the pelagic-to-demersal ratio and other measures of landings composition. Mar. Coast. Fish. 2, 339–361 (2010).

    Article 

    Google Scholar 

  • 21.

    Link, J. S. et al. Emergent properties delineate marine ecosystem perturbation and recovery. Trends Ecol. Evol. 30, 649–661 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Tam, J. C. et al. Comparing apples to oranges: Common trends and thresholds in anthropogenic and environmental pressures across multiple marine ecosystems. Front. Mar. Sci. 4, 282 (2017).

    Article 

    Google Scholar 

  • 23.

    Link, J. S. et al. Marine ecosystem assessment in a fisheries management context. Can. J. Fish. Aquat. Sci. 59, 1429–1440 (2002).

    Article 

    Google Scholar 

  • 24.

    Garcia, S. M., Rice, J. & Charles, A. Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution (Wiley-Blackwell, 2014).

    Book 

    Google Scholar 

  • 25.

    Colloca, F. et al. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 14, 89–109 (2013).

    Article 

    Google Scholar 

  • 26.

    National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management (OCM), NOAA Report on the US Marine Economy. NOAA OCM. 23p. https://coast.noaa.gov/digitalcoast/training/econreport.html (2020).

  • 27.

    Teh, L. C. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).

    Article 

    Google Scholar 

  • 28.

    Laterra, P. et al. How are jobs and ecosystem services linked at the local scale?. Ecosyst. Serv. 35, 207–218 (2019).

    Article 

    Google Scholar 

  • 29.

    Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Graham, N. A. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Koslow, J. A. & Davison, P. C. Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and-independent time series. Environ. Dev. 17, 23–32 (2016).

    Article 

    Google Scholar 

  • 32.

    Kahru, M., Kudela, R., Manzano-Sarabia, M. & Mitchell, B. G. Trends in primary production in the California Current detected with satellite data. J. Geophys. Res. Oceans 114, C02004 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES J. Mar. Sci. 70, 755–767 (2013).

    Article 

    Google Scholar 

  • 34.

    Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Critical points in ecosystem responses to fishing and environmental pressures. Mar. Ecol. Progr. Ser. 521, 1–17 (2015).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Fogarty, M. J. & Murawski, S. A. Large-scale disturbance and the structure of marine systems: Fishery impacts on Georges Bank. Ecol. Appl. 8(sp1), S6–S22 (1998).

    Article 

    Google Scholar 

  • 36.

    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Banse, K. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 409–440 (Springer, 1992).

    Chapter 

    Google Scholar 

  • 40.

    Murray, C. J. et al. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2 (2019).

    Article 

    Google Scholar 

  • 41.

    Möllmann, C. Effects of climate change and fisheries on the marine ecosystem of the Baltic Sea. In Oxford Research Encyclopedia of Climate Science (ed. Möllmann, C.) (University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.682.

    Chapter 

    Google Scholar 

  • 42.

    Intergovernmental Oceanographic Commission (IOC-UNESCO) and United Nations Environmental Program (UNEP). Large Marine Ecosystems: Status and Trends (United Nations Environment Programme UNEP, 2016).

    Google Scholar 

  • 43.

    Sangha, K. K., Stoeckl, N., Crossman, N. & Costanza, R. A state-wide economic assessment of coastal and marine ecosystem services to inform sustainable development policies in the Northern Territory, Australia. Mar. Policy 107, 103595 (2019).

    Article 

    Google Scholar 

  • 44.

    Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 117, 2218–2224 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    McGowan, J. A., Bograd, S. J., Lynn, R. J. & Miller, A. J. The biological response to the 1977 regime shift in the California Current. Deep Sea Res. Pt. II 50(14–16), 2567–2582 (2003).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60(2–4), 245–262 (2004).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Kirkman, S. P. et al. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: A comparative assessment. Fish. Oceanogr. 24(S1), 15–30 (2015).

    Article 

    Google Scholar 

  • 48.

    Link, J. S., Watson, R. A., Pranovi, F. & Libralato, S. Comparative production of fisheries yields and ecosystem overfishing in African Large Marine Ecosystems. Environ. Devel. 36, 100529 (2020).

    Article 

    Google Scholar 

  • 49.

    Ye, Y. et al. Rebuilding global fisheries: The World Summit Goal, costs and benefits. Fish Fish. 14, 174–185 (2013).

    Article 

    Google Scholar 

  • 50.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Ding, Q., Chen, X., Hilborn, R. & Chen, Y. Vulnerability to impacts of climate change on marine fisheries and food security. Mar. Policy 83, 55–61 (2017).

    Article 

    Google Scholar 

  • 52.

    NOAA Fisheries. NMFS Headquarters Ecosystem Based Fisheries Management Implementation Plan (NOAA Fisheries, 2019).

    Google Scholar 

  • 53.

    Witherell, D., Pautzke, C. & Fluharty, D. An ecosystem-based approach for Alaska groundfish fisheries. ICES J. Mar. Sci. 57, 771–777 (2000).

    Article 

    Google Scholar 

  • 54.

    National Aeronautics and Space Administration (NASA). NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data. NASA OB.DAAC, Greenbelt, MD, USA. (2014)

  • 55.

    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  • 56.

    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Peters, R. et al. Habitat science is a fundamental element in an ecosystem-based fisheries management framework: an update to the Marine Fisheries Habitat Assessment Improvement Plan. US Dept. of Commerce, NOAA. NOAA Tech. Memo. NMFS-F/SPO-181. (2018).

  • 58.

    Cannizzaro, J. P. & Carder, K. L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 101, 13–24 (2006).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Reid, R. N., Almeida, F. P., & Zetlin, C. A. Essential fish habitat source document: Fishery-independent surveys, data sources, and methods. NOAA Tech. Memo. NMFS NE 122. (1999).

  • 60.

    Stauffer, G. NOAA Protocols for Groundfish Bottom Trawl Surveys of the Nation’s Fishery Resources. US Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-65. (2004).

  • 61.

    National Ocean Economics Program. State of the US Ocean and Coastal Economies 2016 Update. Middlebury Institute of International Studies at Monterey, Center for the Blue Economy. (2016).

  • 62.

    Craig, M. T. et al. Status review report of Pacific bluefin tuna (Thunnus orientalis). NOAA Tech. Memo. NMFS-SWFSC-587. (2017).

  • 63.

    National Oceanic and Atmospheric Administration (NOAA). Spatial trends in coastal socioeconomics (STICS): Coastal county definitions. NOAA. 12p. https://coast.noaa.gov/htdata/SocioEconomic/NOAA_CoastalCountyDefinitions.pdf (2013).

  • 64.

    National Oceanic and Atmospheric Administration (NOAA). NOAA Office of Coast Survey maritime zones of the United States. NOAA. (2021). https://nauticalcharts.noaa.gov/data/us-maritime-limits-and-boundaries.html.

  • 65.

    Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 1–9 (2017).

    Article 

    Google Scholar 

  • 66.

    NOAA Fisheries. National marine fisheries service—2nd quarter 2017 update. NOAA Fisheries 53p. (2017).


  • Source: Ecology - nature.com

    Diving into the global problem of technology waste

    Imagining the distant past — and finding keys to the future