Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).
Google Scholar
What are EBVs? GEO BON https://geobon.org/ebvs/what-are-ebvs/ (2020).
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
Google Scholar
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).
Google Scholar
Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).
Google Scholar
Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).
Google Scholar
Lausch, A. et al. Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sens. 10, 1120 (2018).
Google Scholar
Barga, R., Gannon, D. & Reed, D. The client and the cloud democratizing research computing. IEEE Internet Comput. 15, 72–75 (2011).
Google Scholar
Muller-Karger, F. E. et al. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecol. Appl. 28, 749–760 (2018).
Google Scholar
O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).
Google Scholar
Geijzendorffer, I. R. et al. Bridging the gap between biodiversity data and policy reporting needs: an essential biodiversity variables perspective. J. Appl. Ecol. 53, 1341–1350 (2016).
Google Scholar
Rohde, S., Hostmann, M., Peter, A. & Ewald, K. C. Room for rivers: an integrative search strategy for floodplain restoration. Landsc. Urban Plan. 78, 50–70 (2006).
Google Scholar
Belward, A. The Global Observing System for Climate: Implementation Needs Report No. GCOS-200 (Global Climate Observing System, 2016).
Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014).
Google Scholar
Wu, J. G. Effects of changing scale on landscape pattern analysis: scaling relations. Landsc. Ecol. 19, 125–138 (2004).
Google Scholar
Lake, P. S. Disturbance, patchiness, and diversity in streams. J. N. Am. Benthol. Soc. 19, 573–592 (2000).
Google Scholar
Graves, S. J. et al. Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sens. 8, 161 (2016).
Google Scholar
Schlerf, M., Atzberger, C. & Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 95, 177–194 (2005).
Google Scholar
Xue, Y. F., Wang, T. J. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 878 (2017).
Google Scholar
Zhao, M. S., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).
Google Scholar
Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).
Google Scholar
Curran, P. J., Dungan, J. L. & Peterson, D. L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies. Remote Sens. Environ. 76, 349–359 (2001).
Google Scholar
Homolova, L., Maenovsky, Z., Clevers, J., Garcia-Santos, G. & Schaeprnan, M. E. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).
Google Scholar
Khosravipour, A., Skidmore, A. K. & Isenburg, M. Generating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applications. Int. J. Appl. Earth Obs. Geoinf. 52, 104–114 (2016).
Google Scholar
Verger, A. & Descals, A. Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)—300 m Version 1; Algorithm Theoretical Basis Document (ATBD), Issue 1.00 (Framework Service Contract No. 199494-JRC) (Copernicus Global Land Operations CGLOPS-1, 2020).
Copernicus Global Land Service: FAPAR Copernicus https://land.copernicus.eu/global/about (2020).
Schmidt, K. S. et al. Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm. Eng. Remote Sens. 70, 703–715 (2004).
Google Scholar
Arvor, D., Durieux, L., Andres, S. & Laporte, M. A. Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 82, 125–137 (2013).
Google Scholar
Lucas, R., Rowlands, A., Brown, A., Keyworth, S. & Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 62, 165–185 (2007).
Google Scholar
Skidmore, A. K. An expert system classifies eucalypt forest types using Landsat thematic mapper data and a digital terrain model. Photogramm. Eng. Remote Sens. 55, 1449–1464 (1989).
Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).
Google Scholar
Lausch, A. et al. Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 295, 31–41 (2015).
Google Scholar
Buchhorn, M. et al. Copernicus global land cover layers—Collection 2. Remote Sens. 12, 1044 (2020).
Google Scholar
Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Google Scholar
Ye, H. et al. Improving remote sensing-based net primary production estimation in the grazed land with defoliation formulation model. J. Mt. Sci. 16, 323–336 (2019).
Google Scholar
Curran, P. J. & Steele, C. M. MERIS: the re-branding of an ocean sensor. Int. J. Remote Sens. 26, 1781–1798 (2005).
Google Scholar
Garrigues, S., Allard, D., Baret, F. & Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 105, 286–298 (2006).
Google Scholar
Wu, S. B. et al. Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations. ISPRS J. Photogramm. Remote Sens. 171, 36–48 (2021).
Google Scholar
Salcedo-Sanz, S. et al. Machine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sources. Inf. Fusion 63, 256–272 (2020).
Google Scholar
Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).
Google Scholar
Healy, C., Gotelli, N. J. & Potvin, C. Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. J. Ecol. 96, 903–913 (2008).
Google Scholar
Richards, J. A., Woodgate, P. W. & Skidmore, A. K. An explanation of enhanced radar backscattering from flooded forests. Int. J. Remote Sens. 8, 1093–1100 (1987).
Google Scholar
Morsdorf, F. et al. in Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 83–104 (Springer International, 2020).
Gratani, L. & Bombelli, A. Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environ. Exp. Bot. 43, 141–153 (2000).
Google Scholar
Kitayama, K. & Aiba, S. I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 90, 37–51 (2002).
Google Scholar
Nagler, P. L., Glenn, E. P. & Hinojosa-Huerta, O. Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, Mexico. Remote Sens. Environ. 113, 1473–1485 (2009).
Google Scholar
Brassard, B. W., Chen, H. Y. H., Bergeron, Y. & Pare, D. Differences in fine root productivity between mixed- and single-species stands. Funct. Ecol. 25, 238–246 (2011).
Google Scholar
Reich, P. B., Walters, M. B. & Ellsworth, D. S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).
Google Scholar
Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009).
Google Scholar
Jones, M. O., Jones, L. A., Kimball, J. S. & McDonald, K. C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).
Google Scholar
Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).
Google Scholar
Niklas, K. J. et al. ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proc. Natl Acad. Sci. USA 104, 8891–8896 (2007).
Google Scholar
Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).
Google Scholar
Bai, Y. F. et al. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 49, 1204–1215 (2012).
Google Scholar
Schmeller, D. S. et al. An operational definition of essential biodiversity variables. Biodivers. Conserv. 26, 2967–2972 (2017).
Google Scholar
Potter, C. et al. Recent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite record. Ecosystems 8, 808–824 (2005).
Google Scholar
Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008).
Google Scholar
Russell-Smith, J., Ryan, P. G. & Durieu, R. A LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchiness. J. Appl. Ecol. 34, 748–766 (1997).
Google Scholar
Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).
Google Scholar
Nidumolu, U. B., De Bie, C., Van Keulen, H. & Skidmore, A. K. Enhancement of area-specific land-use objectives for land development. Land Degrad. Dev. 15, 513–525 (2004).
Google Scholar
Chen, F. et al. Fast automatic airport detection in remote sensing images using convolutional neural networks. Remote Sens. 10, 443 (2018).
Google Scholar
Weng, Q. H. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens. Environ. 117, 34–49 (2012).
Google Scholar
Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A. & Davis, C. H. Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 14, 549–553 (2017).
Google Scholar
Skidmore, A. K., Turner, B. J., Brinkhof, W. & Knowles, E. Performance of a neural network: mapping forests using GIS and remotely sensed data. Photogramm. Eng. Remote Sens. 63, 501–514 (1997).
Joshi, C. et al. Indirect remote sensing of a cryptic forest understorey invasive species. For. Ecol. Manag. 225, 245–256 (2006).
Google Scholar
Defries, R. S. et al. Mapping the land surface for global atmosphere–biosphere models—toward continuous distributions of vegetation’s functional properties. J. Geophys. Res. Atmos. 100, 20867–20882 (1995).
Google Scholar
Cunliffe, A. M., Brazier, R. E. & Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 183, 129–143 (2016).
Google Scholar
Asner, G. P., Wessman, C. A. & Schimel, D. S. Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling. Ecol. Appl. 8, 1022–1036 (1998).
Google Scholar
Peterseil, J. et al. Evaluating the ecological sustainability of Austrian agricultural landscapes—the SINUS approach. Land Use Policy 21, 307–320 (2004).
Google Scholar
Saura, S., Bodin, O. & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
Google Scholar
De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E. & Dent, D. L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115, 692–702 (2011).
Google Scholar
Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).
Google Scholar
Baldeck, C. A. & Asner, G. P. Improving remote species identification through efficient training data collection. Remote Sens. 6, 2682–2698 (2014).
Google Scholar
Fassnacht, F. E. et al. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87 (2016).
Google Scholar
Lausch, A. et al. Linking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).
Google Scholar
Shi, Y. F., Wang, T. J., Skidmore, A. K. & Heurich, M. Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens. 137, 163–174 (2018).
Google Scholar
Wilkes, P. et al. Using discrete-return airborne laser scanning to quantify number of canopy strata across diverse forest types. Methods Ecol. Evol. 7, 700–712 (2016).
Google Scholar
Hyyppa, J. et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 29, 1339–1366 (2008).
Google Scholar
Transon, J., d’Andrimont, R., Maugnard, A. & Defourny, P. Survey of hyperspectral earth observation applications from space in the Sentinel-2 context. Remote Sens. 10, 157 (2018).
Google Scholar
Guanter, L. et al. The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens. 7, 8830–8857 (2015).
Google Scholar
Qi, W. L. & Dubayah, R. O. Combining Tandem-X InSAR and simulated GEDI LiDAR observations for forest structure mapping. Remote Sens. Environ. 187, 253–266 (2016).
Google Scholar
Ramoelo, A., Cho, M., Mathieu, R. & Skidmore, A. K. Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens. 9, 094096 (2015).
Google Scholar
Madonsela, S. et al. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. Int. J. Appl. Earth Obs. Geoinf. 58, 65–73 (2017).
Google Scholar
Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).
Google Scholar
Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
Google Scholar
Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytol. 228, 485–493 (2020).
Google Scholar
McManus, K. M. et al. Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote Sens. 8, 196 (2016).
Google Scholar
Urbano, F. et al. Wildlife tracking data management: a new vision. Phil. Trans. R. Soc. B Biol. Sci. 365, 2177–2185 (2010).
Google Scholar
Cubaynes, H. C., Fretwell, P. T., Bamford, C., Gerrish, L. & Jackson, J. A. Whales from space: four mysticete species described using new VHR satellite imagery. Mar. Mammal. Sci. 35, 466–491 (2019).
Google Scholar
Yang, Z. et al. Spotting East African mammals in open savannah from space. PLoS ONE 9, e115989 (2014).
Google Scholar
Neumann, W. et al. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov. Ecol. 3, 8 (2015).
Google Scholar
Weiss, J. R., Smythe, W. D. & Lu, W. W. Science Traceability. In Proc. IEEE Aerospace Conference 292–299 (IEEE, 2005).
National Academies of Sciences, Engineering, and Medicine Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Academies Press, 2018).
Verstraete, M. M., Diner, D. J. & Bezy, J. L. Planning for a spaceborne Earth observation mission: from user expectations to measurement requirements. Environ. Sci. Policy 54, 419–427 (2015).
Google Scholar
Skidmore, A. K. et al. Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).
Google Scholar
Masek, J. G. et al. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926 (2008).
Google Scholar
O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).
Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).
Google Scholar
Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).
Google Scholar
Walters, M. et al. Essential Biodiversity Variables UNEP/CBD/SBSTTA/17/INF/7 (Convention on Biological Diversity, 2013).
Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).
Google Scholar
Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Indic. 60, 947–962 (2016).
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Gibert, J. P., Dell, A. I., DeLong, J. P. & Pawar, S. Scaling-up trait variation from individuals to ecosystems. Adv. Ecol. Res. 52, 1–17 (2015).
Google Scholar
Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).
Google Scholar
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
Google Scholar
Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
Google Scholar
Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).
Google Scholar
Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).
Google Scholar
Schmeller, D. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790 (2017).
Google Scholar
Belward, A. S. & Skoien, J. O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 103, 115–128 (2015).
Google Scholar
Vogel, D. Private global business regulation. Annu. Rev. Polit. Sci. 11, 261–282 (2008).
Google Scholar
Tranquilli, S. et al. Lack of conservation effort rapidly increases African great ape extinction risk. Conserv. Lett. 5, 48–55 (2012).
Google Scholar
Buchanan, G. M. et al. Free satellite data key to conservation. Science 361, 139–140 (2018).
Google Scholar
Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).
Google Scholar
Wulder, M. A. et al. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 170, 62–76 (2015).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Czyz, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).
Google Scholar
Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).
Google Scholar
Cavender-Bares, J. et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity. Remote Sens. 8, 221 (2016).
Google Scholar
Surface Biology and Geology (SBG) NASA Science https://science.nasa.gov/earth-science/decadal-sbg (2020).
Source: Ecology - nature.com