in

Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy

  • 1.

    Byrd, M. S. et al. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect. Immun. 79, 3087–3095. https://doi.org/10.1128/IAI.00057-11 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Behrends, V. et al. Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. Environ. Microbiol. 15, 398–408. https://doi.org/10.1111/j.1462-2920.2012.02840.x (2013).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Calhoun, J. H., Murray, C. K. & Manring, M. M. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan. Clin. Orthop. Relat. Res. 466, 1356–1362. https://doi.org/10.1007/s11999-008-0212-9 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Frykberg, R. G. & Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care New Rochelle 4, 560–582. https://doi.org/10.1089/wound.2015.0635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Jarbrink, K. et al. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev. 6, 15. https://doi.org/10.1186/s13643-016-0400-8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Fife, C. E. & Carter, M. J. Wound care outcomes and associated cost among patients treated in US outpatient wound centers: Data from the US wound registry. Wounds 24, 10–17 (2012).

    PubMed  Google Scholar 

  • 7.

    Valot, B. et al. What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS ONE 10, e0126468. https://doi.org/10.1371/journal.pone.0126468 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Rojo, F. Carbon catabolite repression in Pseudomonas: Optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 34, 658–684. https://doi.org/10.1111/j.1574-6976.2010.00218.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613. https://doi.org/10.1038/nrmicro1932 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Collier, D. N., Hager, P. W. & Phibbs, P. V. Catabolite repression control in the Pseudomonads. Res. Microbiol. 147, 551–561. https://doi.org/10.1016/0923-2508(96)84011-3 (1996).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Scitable by Nature EDUCATION 2005).

  • 12.

    Pellett, S., Bigley, D. V. & Grimes, D. J. Distribution of Pseudomonas aeruginosa in a riverine ecosystem. Appl. Environ. Microb. 45, 328–332 (1983).

    CAS  Article  Google Scholar 

  • 13.

    Döring, G. et al. Distribution and transmission of Pseudomonas aeruginosa andBurkholderia cepacia in a hospital ward. Pediatr. Pulmonol. 21, 90–100. https://doi.org/10.1002/(sici)1099-0496(199602)21:2%3c90::Aid-ppul5%3e3.0.Co;2-t (1996).

    Article  PubMed  Google Scholar 

  • 14.

    Romling, U., Kader, A., Sriramulu, D. D., Simm, R. & Kronvall, G. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ. Microbiol. 7, 1029–1038. https://doi.org/10.1111/j.1462-2920.2005.00780.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Hamilton, W. A., Dawes, E. & A. ,. A diauxic effect with Pseudomonas aeruginosa. Biochem. J. 71, 25P-26P (1959).

    CAS  Google Scholar 

  • 16.

    Liu, Y., Gokhale, C. S., Rainey, P. B. & Zhang, X. X. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25. Mol. Microbiol. 105, 589–605. https://doi.org/10.1111/mmi.13720 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Park, H., McGill, S. L., Arnold, A. D. & Carlson, R. P. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell.Mol. Life Sci. https://doi.org/10.1007/s00018-019-03377-x (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).

    Google Scholar 

  • 19.

    Carlson, R. P. Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23, 1258–1264. https://doi.org/10.1093/bioinformatics/btm082 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Carlson, R. P., Oshota, O. J. & Taffs, R. L. in Reprogramming Microbial Metabolic Pathways (eds Xiaoyuan Wang, Jian Chen, & Peter Quinn) 139–157 (Springer, Netherlands, 2012).

  • 21.

    Folsom, J. P. & Carlson, R. P. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth. Microbiology 161, 1659–1670. https://doi.org/10.1099/mic.0.000118 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Carlson, R. P. Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25, 90–97 (2009).

    CAS  Article  Google Scholar 

  • 23.

    Goelzer, A. & Fromion, V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim. Biophys. Acta 1810, 978–988. https://doi.org/10.1016/j.bbagen.2011.05.014 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Goelzer, A. & Fromion, V. Resource allocation in living organisms. Biochem. Soc. Trans. 45, 945–952. https://doi.org/10.1042/BST20160436 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Yang, L. et al. solveME: Fast and reliable solution of nonlinear ME models. BMC Bioinform. 17, 391. https://doi.org/10.1186/s12859-016-1240-1 (2016).

    CAS  Article  Google Scholar 

  • 26.

    Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. USA 104, 12663–12668. https://doi.org/10.1073/pnas.0609845104 (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 27.

    Vazquez, A. & Oltvai, Z. N. Macromolecular crowding explains overflow metabolism in cells. Sci. Rep. 6, 31007. https://doi.org/10.1038/srep31007 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Zhuang, K., Vemuri, G. N. & Mahadevan, R. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol. 7, 500. https://doi.org/10.1038/msb.2011.34 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Syst. 5, 95–104. https://doi.org/10.1016/j.cels.2017.06.005 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104. https://doi.org/10.1038/nature15765 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Folsom, J. P., Parker, A. E. & Carlson, R. P. Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J. Bacteriol. 196, 2748–2761. https://doi.org/10.1128/JB.01606-14 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Schuster, S., Boley, D., Moller, P., Stark, H. & Kaleta, C. Mathematical models for explaining the Warburg effect: A review focussed on ATP and biomass production. Biochem. Soc. Trans. 43, 1187–1194. https://doi.org/10.1042/BST20150153 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Woods, J. et al. Development and application of a polymicrobial in vitro wound biofilm model. J. Appl. Microbiol. 112, 998–1006. https://doi.org/10.1111/j.1365-2672.2012.05264.x (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Yung, Y. P. et al. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 5, 31. https://doi.org/10.1038/s41522-019-0104-7 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Behrends, V., Ebbels, T. M., Williams, H. D. & Bundy, J. G. Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Appl. Environ. Microbiol. 75, 2453–2463. https://doi.org/10.1128/AEM.01742-08 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Berger, A. et al. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS ONE 9, e88368. https://doi.org/10.1371/journal.pone.0088368 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Nouwens, A. S. et al. Complementing genomics with proteomics: The membrane subproteome ofPseudomonas aeruginosa PAO1. Electrophoresis 21, 3797–3809. https://doi.org/10.1002/1522-2683(200011)21:17%3c3797::Aid-elps3797%3e3.0.Co;2-p (2000).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Penesyan, A. et al. Genetically and phenotypically distinct Pseudomonas aeruginosa cystic fibrosis isolates share a core proteomic signature. PLoS ONE 10, e0138527. https://doi.org/10.1371/journal.pone.0138527 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Nikel, P. I., Chavarria, M., Fuhrer, T., Sauer, U. & de Lorenzo, V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 290, 25920–25932. https://doi.org/10.1074/jbc.M115.687749 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Phalak, P., Chen, J., Carlson, R. P. & Henson, M. A. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst. Biol. 10, 90. https://doi.org/10.1186/s12918-016-0334-8 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Oberhardt, M. A., Goldberg, J. B., Hogardt, M. & Papin, J. A. Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J. Bacteriol. 192, 5534–5548. https://doi.org/10.1128/JB.00900-10 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119. https://doi.org/10.1038/msb4100162 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Schuster, S., Pfeiffer, T. & Fell, D. A. Is maximization of molar yield in metabolic networks favoured by evolution?. J. Theor. Biol. 252, 497–504. https://doi.org/10.1016/j.jtbi.2007.12.008 (2008).

    MathSciNet  CAS  Article  PubMed  MATH  Google Scholar 

  • 44.

    Varma, A., Boesch, B. W. & Palsson, B. O. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473 (1993).

    CAS  Article  Google Scholar 

  • 45.

    Varma, A. & Palsson, B. O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microb. 60, 3724–3731 (1994).

    CAS  Article  Google Scholar 

  • 46.

    Bar-Even, A. et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410. https://doi.org/10.1021/bi2002289 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Volkmer, B. & Heinemann, M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE 6, e23126. https://doi.org/10.1371/journal.pone.0023126 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251. https://doi.org/10.1086/506527 (2006).

    Article  PubMed  Google Scholar 

  • 49.

    Hoffmann, S., Hoppe, A. & Holzhütter, H.-G. Composition of metabolic flux distributions by functionally interpretable minimal flux modes (MinModes). Genome Inf. 17, 195–207 (2006).

    CAS  Google Scholar 

  • 50.

    Holzhutter, H. G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922. https://doi.org/10.1111/j.1432-1033.2004.04213.x (2004).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Carlson, R. P. & Taffs, R. L. Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr. Opin. Biotechnol. 21, 670–676 (2010).

    CAS  Article  Google Scholar 

  • 52.

    Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M. & Sauer, U. Multidimensional optimality of microbial metabolism. Science New York NY 336, 601–604. https://doi.org/10.1126/science.1216882 (2012).

    CAS  Article  Google Scholar 

  • 53.

    Velayudhan, J., Jones, M. A., Barrow, P. A. & Kelly, D. J. l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect. Immun. 72, 260–268. https://doi.org/10.1128/iai.72.1.260-268.2004 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L. & Schomburg, D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ. Microbiol. 12, 1734–1747. https://doi.org/10.1111/j.1462-2920.2010.02253.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Tiwari, N. & Campbell, J. Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochimica et Biophysica Acta BBA Gen. Subj. 192, 395–401. https://doi.org/10.1016/0304-4165(69)90388-2 (1969).

    CAS  Article  Google Scholar 

  • 56.

    Trautwein, K. et al. Benzoate mediates repression of C(4)-dicarboxylate utilization in “Aromatoleum aromaticum” EbN1. J. Bacteriol. 194, 518–528. https://doi.org/10.1128/JB.05072-11 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Kremling, A., Geiselmann, J., Ropers, D. & de Jong, H. An ensemble of mathematical models showing diauxic growth behaviour. BMC Syst. Biol. 12, 1–16. https://doi.org/10.1186/s12918-018-0604-8 (2018).

    CAS  Article  Google Scholar 

  • 58.

    Kremling, A., Geiselmann, J., Ropers, D. & de Jong, H. Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol. 23, 99–109. https://doi.org/10.1016/j.tim.2014.11.002 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Ibberson, C. B. & Whiteley, M. The social life of microbes in chronic infection. Curr. Opin. Microbiol. 53, 44–50. https://doi.org/10.1016/j.mib.2020.02.003 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    King, A. N., de Mets, F. & Brinsmade, S. R. Who’s in control? Regulation of metabolism and pathogenesis in space and time. Curr. Opin. Microbiol. 55, 88–96. https://doi.org/10.1016/j.mib.2020.05.009 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Tuncil, Y. E. et al. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio 8, 66. https://doi.org/10.1128/mBio.01068-17 (2017).

    Article  Google Scholar 

  • 62.

    Goyal, A., Dubinkina, V. & Maslov, S. Multiple stable states in microbial communities explained by the stable marriage problem. ISME J. 12, 2823–2834. https://doi.org/10.1038/s41396-018-0222-x (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Ren, D., Madsen, J. S., Sorensen, S. J. & Burmolle, M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 9, 81–89. https://doi.org/10.1038/ismej.2014.96 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Russel, J., Roder, H. L., Madsen, J. S., Burmolle, M. & Sorensen, S. J. Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl. Acad. Sci. USA 114, 10684–10688. https://doi.org/10.1073/pnas.1706016114 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Brileya, K. A., Camilleri, L. B., Zane, G. M., Wall, J. D. & Fields, M. W. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy. Front. Microbiol. 5, 693. https://doi.org/10.3389/fmicb.2014.00693 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Carlson, R. P. et al. Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia. Biochem. Soc. Trans. 46, 269–284. https://doi.org/10.1042/BST20170242 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Beck, A., Hunt, K., Bernstein, H. C. & Carlson, R. in Biotechnology for Biofuel Production and Optimization (eds Carrie A. Eckert & Cong T. Trinh) 407–432 (Elsevier, Amsterdam, 2016).

  • 68.

    Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. USA 107, 2124–2129. https://doi.org/10.1073/pnas.0908456107 (2010).

    ADS  Article  PubMed  Google Scholar 

  • 69.

    DeLeon, S. et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. 82, 4718–4728. https://doi.org/10.1128/IAI.02198-14 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Filkins, L. M. et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. 197, 2252–2264. https://doi.org/10.1128/jb.00059-15 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    Bernstein, H. C., Paulson, S. D. & Carlson, R. P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166. https://doi.org/10.1016/j.jbiotec.2011.10.001 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Bernier, S. P., Letoffe, S., Delepierre, M. & Ghigo, J. M. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81, 705–716. https://doi.org/10.1111/j.1365-2958.2011.07724.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Palkova, Z. et al. Ammonia mediates communication between yeast colonies. Nature 390, 532–536. https://doi.org/10.1038/37398 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 74.

    Wang, J., Yan, D., Dixon, R. & Wang, Y. P. Deciphering the principles of bacterial nitrogen dietary preferences: A strategy for nutrient containment. mBio https://doi.org/10.1128/mBio.00792-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Schreiber, K. et al. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J. Bacteriol. 189, 4310–4314. https://doi.org/10.1128/JB.00240-07 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 185, 1485–1491. https://doi.org/10.1128/JB.185.5.1485-1491.2003 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Cornforth, D. M. & Foster, K. R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285. https://doi.org/10.1038/nrmicro2977 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 78.

    Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110, 1059–1064. https://doi.org/10.1073/pnas.1214550110 (2013).

    ADS  Article  PubMed  Google Scholar 

  • 79.

    Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc. Natl. Acad. Sci. USA 112, 2187–2191. https://doi.org/10.1073/pnas.1500704112 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 80.

    Allegretta, G. et al. In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front. Microbiol. 8, 1–12. https://doi.org/10.3389/fmicb.2017.00924 (2017).

    Article  Google Scholar 

  • 81.

    Deziel, E. et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101, 1339–1344. https://doi.org/10.1073/pnas.0307694100 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 82.

    Meirelles, L. A. & Newman, D. K. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol. Microbiol. 110, 995–1010. https://doi.org/10.1111/mmi.14132 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 83.

    Hall, S. et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins Basel https://doi.org/10.3390/toxins8080236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 84.

    Price-Whelan, A., Dietrich, L. E. & Newman, D. K. Rethinking “secondary” metabolism: Physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2, 71–78. https://doi.org/10.1038/nchembio764 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 85.

    Noto, M. J., Burns, W. J., Beavers, W. N. & Skaar, E. P. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J. Bacteriol. https://doi.org/10.1128/JB.00221-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 86.

    James, T. J., Hughes, M. A., Cherry, G. W. & Taylor, R. P. Simple biochemical markers to assess chronic wounds. Wound Repair. Regen. 8, 264–269. https://doi.org/10.1046/j.1524-475x.2000.00264.x (2000).

    CAS  Article  PubMed  Google Scholar 

  • 87.

    Trengove, N. J., Langton, S. R. & Stacey, M. C. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair. Regen. 4, 234–239. https://doi.org/10.1046/j.1524-475X.1996.40211.x (1996).

    CAS  Article  PubMed  Google Scholar 

  • 88.

    Cox, K. et al. Prevalence and significance of lactic acidosis in diabetic ketoacidosis. J. Crit. Care 27, 132–137. https://doi.org/10.1016/j.jcrc.2011.07.071 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 89.

    de Oliveira, F. P. et al. Prevalence, antimicrobial susceptibility, and clonal diversity of Pseudomonas aeruginosa in Chronic Wounds. J. Wound Ostomy Contin. Nurs. 44, 528–535. https://doi.org/10.1097/won.0000000000000373 (2017).

    Article  Google Scholar 

  • 90.

    Rhoads, D. D., Wolcott, R. D., Sun, Y. & Dowd, S. E. Comparison of culture and molecular identification of bacteria in chronic wounds. Int. J. Mol. Sci. 13, 2535–2550. https://doi.org/10.3390/ijms13032535 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 91.

    Dalton, T. et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6, e27317. https://doi.org/10.1371/journal.pone.0027317 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 92.

    Kirketerp-Moller, K. et al. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 46, 2717–2722. https://doi.org/10.1128/JCM.00501-08 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 93.

    Murray, J. L., Connell, J. L., Stacy, A., Turner, K. H. & Whiteley, M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 52, 188–199. https://doi.org/10.1007/s12275-014-4067-3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 94.

    Ferreira, M. T., Manso, A. S., Gaspar, P., Pinho, M. G. & Neves, A. R. Effect of oxygen on glucose metabolism: Utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS ONE 8, e58277. https://doi.org/10.1371/journal.pone.0058277 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 95.

    Tynecka, Z., Szcześniak, Z., Malm, A. & Los, R. Energy conservation in aerobically grown Staphylococcus aureus. Res. Microbiol. 150, 555–566. https://doi.org/10.1016/s0923-2508(99)00102-3 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 96.

    Sanchez, C. J. Jr. et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13, 47. https://doi.org/10.1186/1471-2334-13-47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 97.

    James, G. A. et al. Biofilms in chronic wounds. Wound Repair. Regen. 16, 37–44. https://doi.org/10.1111/j.1524-475X.2007.00321.x (2008).

    ADS  Article  PubMed  Google Scholar 

  • 98.

    Bacon, C. W. & White, J. Microbial Endophytes (CRC Press, Boca Raton, 2000).

    Google Scholar 

  • 99.

    Mann, M. Filter Aided Sample Preparation (FASP) Method. http://www.biochem.mpg.de/226356/FASP (2013).

  • 100.

    Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protocols 11, 2301–2319. https://doi.org/10.1038/nprot.2016.136 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 101.

    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 102.

    Szklarczyk, D. et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452. https://doi.org/10.1093/nar/gku1003 (2015).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem