Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6, 477–487 (2008).
Google Scholar
Cressler, C. E., McLeod, D. V., Rozins, C., Van Den Hoogen, J. & Day, T. The adaptive evolution of virulence: A review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).
Google Scholar
Lanzi, G. et al. Molecular and biological characterization of deformed wing virus of honeybees (Apismellifera L.). J. Virol. 80, 4998–5009 (2006).
Google Scholar
Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumann, P. Dead or alive: Deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl. Environ. Microbiol. 78, 981–987 (2012).
Google Scholar
Highfield, A. C. et al. Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 75, 7212–7220 (2009).
Google Scholar
Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41, 353–363 (2010).
Google Scholar
De Miranda, J. R. & Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 103, S48–S61 (2010).
Google Scholar
Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Annu. Rev. Virol. 6, 49–69 (2019).
Google Scholar
Sumpter, D. J. & Martin, S. J. The dynamics of virus epidemics in Varroa-infested honey bee colonies. J. Anim. Ecol. 73, 51–63 (2004).
Google Scholar
Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. 116, 1792–1801 (2019).
Google Scholar
Yang, X. & Cox-Foster, D. L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. 102, 7470–7475 (2005).
Google Scholar
Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).
Google Scholar
Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597 (2016).
Google Scholar
Dalmon, A. et al. Evidence for positive selection and recombination hotspots in deformed wing virus (DWV). Sci. Rep. 7, 1–12 (2017).
Google Scholar
Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306 (2012).
Google Scholar
Moore, J. et al. Recombinants between deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J. Gen. Virol. 92, 156–161 (2011).
Google Scholar
Ryabov, E. V. et al. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 10, e1004230 (2014).
Google Scholar
Ryabov, E. V. et al. Dynamic evolution in the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using reverse genetics. PLoS Biol. 17, e3000502 (2019).
Google Scholar
Mondet, F. et al. Specific cues associated with honey bee social defence against Varroa destructor infested brood. Sci. Rep. 6, 25444 (2016).
Google Scholar
Spivak, M. & Danka, R. G. Perspectives on hygienic behavior in Apismellifera and other social insects. Apidologie https://doi.org/10.1007/s13592-020-00784-z (2020).
Google Scholar
Spivak, M. & Gilliam, M. Facultative expression of hygienic behaviour of honey bees in relation to disease resistance. J. Apic. Res. 32, 147–157 (1993).
Google Scholar
Baracchi, D., Fadda, A. & Turillazzi, S. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J. Insect Physiol. 58, 1589–1596 (2012).
Google Scholar
Traynor, K. S. et al. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 36, 592–606 (2020).
Google Scholar
Sun, Q. & Zhou, X. Corpse management in social insects. Int. J:. Biol. Sci. 9, 313 (2013).
Van Allen, B. G. et al. Cannibalism and infectious disease: Friends or foes?. Am. Nat. 190, 299–312 (2017).
Google Scholar
Bourke, A. F. Queen behaviour, reproduction and egg cannibalism in multiple-queen colonies of the ant Leptothorax acervorum. Anim. Behav. 42, 295–310 (1991).
Google Scholar
Pulliainen, U., Helanterä, H., Sundström, L. & Schultner, E. The possible role of ant larvae in the defence against social parasites. Proc. R. Soc. B 286, 20182867 (2019).
Google Scholar
Evans, H. & West-Eberhard, M. The Wasps (Univ. Michigan, 1970).
Schmickl, T. & Crailsheim, K. Cannibalism and early capping: Strategy of honeybee colonies in times of experimental pollen shortages. J. Comp. Physiol. A 187, 541–547 (2001).
Google Scholar
Webster, T. C., Peng, Y. S. & Duffey, S. S. Conservation of nutrients in larval tissue by cannibalizing honey bees. Physiol. Entomol. 12, 225–231 (1987).
Google Scholar
Woyke, J. Cannibalism and brood-rearing efficiency in the honeybee. J. Apic. Res. 16, 84–94 (1977).
Google Scholar
Chouvenc, T. Limited survival strategy in starving subterranean termite colonies. Insectes Soc. 67, 71–82 (2020).
Google Scholar
Raina, A. K., Park, Y. I. & Lax, A. Defaunation leads to cannibalism in primary reproductives of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 97, 753–756 (2004).
Google Scholar
Schmickl, T. & Crailsheim, K. Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply. Apidologie 35, 249–263 (2004).
Google Scholar
Meunier, J. Social immunity and the evolution of group living in insects. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140102 (2015).
Google Scholar
Rueppell, O., Hayworth, M. K. & Ross, N. Altruistic self-removal of health-compromised honey bee workers from their hive. J. Evol. Biol. 23, 1538–1546 (2010).
Google Scholar
Halling, L. & Oldroyd, B. P. Do policing honeybee (Apis mellifera) workers target eggs in drone comb?. Insectes Soc. 50, 59–61 (2003).
Google Scholar
Santomauro, G., Oldham, N. J., Boland, W. & Engels, W. Cannibalism of diploid drone larvae in the honey bee (Apis mellifera) is released by odd pattern of cuticular substances. J. Apic. Res. 43, 69–74 (2004).
Google Scholar
Imdorf, A., Rickli, M., Kilchenmann, V., Bogdanov, S. & Wille, H. Nitrogen and mineral constituents of honey bee worker brood during pollen shortage. Apidologie 29, 315–325 (1998).
Google Scholar
Rudolf, V. H. & Antonovics, J. Disease transmission by cannibalism: Rare event or common occurrence?. Proc. R. Soc. B Biol. Sci. 274, 1205–1210 (2007).
Google Scholar
Chapman, J. W. et al. Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecol. Entomol. 24, 268–275 (1999).
Google Scholar
Hamano, K. et al. Waterborne and cannibalism-mediated transmission of the Yellow head virus in Penaeus monodon. Aquaculture 437, 161–166 (2015).
Google Scholar
Möckel, N., Gisder, S. & Genersch, E. Horizontal transmission of deformed wing virus: Pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J. Gen. Virol. 92, 370–377 (2011).
Google Scholar
Ryabov, E. V. et al. Development of a honey bee RNA virus vector based on the genome of a deformed wing virus. Viruses 12, 374 (2020).
Google Scholar
Posada-Florez, F. et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci. Rep. 9, 1–10 (2019).
Google Scholar
Bull, J. C. et al. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS Pathog. 8, e1003083 (2012).
Google Scholar
Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).
Google Scholar
Masterman, R., Ross, R., Mesce, K. & Spivak, M. Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). J. Comp. Physiol. A 187, 441–452 (2001).
Google Scholar
Crailsheim, K. Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie 29, 97–112 (1998).
Google Scholar
Nixon, H. & Ribbands, C. R. Food transmission within the honeybee community. Proc. R. Soc. Lond. Ser. B Biol. Sci. 140, 43–50 (1952).
Google Scholar
Arathi, H. & Spivak, M. Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Anim. Behav. 62, 57–66 (2001).
Google Scholar
Knecht, D. & Kaatz, H. Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie 21, 457–468 (1990).
Google Scholar
Li, Z. et al. Transcriptional and physiological responses of hypopharyngeal glands in honeybees (Apis mellifera L.) infected by Nosema ceranae. Apidologie 50, 51–62 (2019).
Google Scholar
Lass, A. & Crailsheim, K. Influence of age and caging upon protein metabolism, hypopharyngeal glands and trophallactic behavior in the honey bee (Apis mellifera L.). Insectes Soc. 43, 347–358 (1996).
Google Scholar
Chiou, S.-S. & Chen, W.-J. Mutations in the NS3 gene and 3′-NCR of Japanese encephalitis virus isolated from an unconventional ecosystem and implications for natural attenuation of the virus. Virology 289, 129–136 (2001).
Google Scholar
Steel, A., Gubler, D. J. & Bennett, S. N. Natural attenuation of dengue virus type-2 after a series of island outbreaks: A retrospective phylogenetic study of events in the South Pacific three decades ago. Virology 405, 505–512 (2010).
Google Scholar
de Souza, F. S., Allsopp, M. H. & Martin, S. J. Deformed wing virus prevalence and load in honeybees in South Africa. Arch. Virol. 166, 237–241 (2020).
Google Scholar
Martin, S. J. et al. Varroa destructor reproduction and cell re-capping in mite-resistant Apis mellifera populations. Apidologie 51, 369–381 (2020).
Google Scholar
Kulhanek, K. et al. Survey-derived best management practices for backyard beekeepers improve colony health and reduce mortality. PLoS ONE 16, e0245490 (2021).
Google Scholar
Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14, e0218392 (2019).
Google Scholar
Ryabov, E. V. et al. Recent spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. Sci. Rep. 7, 1–10 (2017).
Google Scholar
Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).
Source: Ecology - nature.com