in

Quantification of dissolved O2 in bulk aqueous solutions and porous media using NMR relaxometry

  • 1.

    Seevers, D. O. A nuclear magnetic method for determining the permeability of sandstones. Presented at the SPWLA 7th Annual Logging Symposium, Tulsa, OK, 9–11 May 1966.

  • 2.

    Timur, A. Effective porosity and permeability of sandstones investigated through nuclear magnetic principles. Log Anal. 10(1), 3 (1969).

    Google Scholar 

  • 3.

    Coates, G. R., Xiao, L. & Prammer, M. G. NMR Logging Principles and Applications (Halliburton Energy Services, Houston, 1999).

    Google Scholar 

  • 4.

    Korringa, J., Seevers, D. O. & Torrey, H. C. Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers. Phys. Rev. 127(4), 1143–1150 (1962).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Kleinberg, R. L., Kenyon, W. E. & Mitra, P. P. Mechanism of NMR relaxation of fluids in rock. J. Magn. Reson. Ser. A 108(2), 206–214 (1994).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Watson, A. T. & Chang, C. T. P. Characterizing porous media with NMR methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(4), 343–386 (1997).

    CAS  Article  Google Scholar 

  • 7.

    Godefroy, S., Fleury, M., Deflandre, F. & Korb, J. P. Temperature effect on NMR surface relaxation in rocks for well logging applications. J. Phys. Chem. B 106(43), 11183–11190 (2002).

    CAS  Article  Google Scholar 

  • 8.

    Glasel, J. A. & Lee, K. H. On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Soc. 96(4), 970–978 (1974).

    CAS  Article  Google Scholar 

  • 9.

    Foley, I., Farooqui, S. A. & Kleinberg, R. L. Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces. J. Magn. Reson. Ser. A 123(1), 95–104 (1996).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Mitchell, J., Stark, S. C. & Strange, J. H. Probing surface interactions by combining NMR cryoporometry and NMR relaxometry. J. Phys. D Appl. Phys. 38(12), 1950–1958 (2005).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Keating, K. & Knight, R. A laboratory study to determine the effect of iron oxides on proton NMR measurements. Geophysics 72(1), E27–E32 (2007).

    ADS  Article  Google Scholar 

  • 12.

    Saidian, M. & Prasad, M. Effect of mineralogy on porosity, pore size distribution and surface relaxivity on nuclear magnetic resonance characterizations: A case study of Middle Bakken and Three Forks Formations. J. Fuel 161, 197–206 (2015).

    CAS  Article  Google Scholar 

  • 13.

    Benedekt, G. B. & Purcell, E. M. Nuclear magnetic resonance in liquids under high pressure. J. Chem. Phys. 22(12), 2003–2012 (1954).

    ADS  Article  Google Scholar 

  • 14.

    Nestle, N., Baumann, T. & Niessner, R. Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry. Water Res. 37(14), 3361–3366 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Shikhov, I. & Arns, C. H. Temperature-dependent oxygen effect on NMR D-T2 relaxation-diffusion correlation of n-alkanes. Appl. Magn. Reson. 47(12), 1391–1408 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Horvath, I. T. & Millar, J. M. NMR under high gas pressure. Chem. Rev. 91(7), 13339–21351 (1991).

    Article  Google Scholar 

  • 17.

    Kamatari, Y. O., Kitahara, R., Yamada, H., Yokoyama, S. & Akasaka, K. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods 34(1), 133–143 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Bezonova, I., Forman-Kay, J. & Prosser, R. S. Molecular oxygen as a paramagnetic NMR probe of protein solvent exposure and topology. Concepts Magn. Reson. Part A 32(4), 239–253 (2008).

    Article  CAS  Google Scholar 

  • 19.

    Prosser, R. S. & Evanics, F. Paramagnetic effects of dioxygen in solution NMR—studies of membrane immersion depth, protein topology, and protein interactions. In Modern Magnetic Resonance (ed. Webb, G. A.) 475–483 (Springer, Dordrecht, 2008).

    Google Scholar 

  • 20.

    Erriah, B. & Elliot, S. J. Experimental evidence for the role of paramagnetic oxygen concentration on the decay of long-lived nuclear spin order. R. Soc. Chem. Adv. 9, 23418–23424 (2019).

    CAS  Google Scholar 

  • 21.

    Debye, P. Polar Molecules (New York, 1945).

  • 22.

    Chiarotti, G., Cristiani, G. & Giulotto, L. Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Il Nuovo Cimento 1(5), 863–873 (1955).

    Article  Google Scholar 

  • 23.

    Mirhej, M. E. Proton spin relaxation by paramagnetic molecular oxygen. Can. J. Chem. 43(5), 1130–1138 (1964).

    Article  Google Scholar 

  • 24.

    Parker, D. S. & Harmon, J. F. Dipolar spin-lattice relaxation in water containing oxygen. Chem. Phys. Lett. 25(4), 505–506 (1974).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Morriss, C. E. et al. Hydrocarbon saturation and viscosity estimation from NMR logging in the Belridge Diatomite. Log Analyst 38(2), 44–72 (1997).

    MathSciNet  Google Scholar 

  • 26.

    Lo, S. W., Hirasaki, G. J., House, W. V. & Kobayashi, R. Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratios of methane/hydrocarbon mixtures. SPE J. 7(1), 24–34 (2002).

    CAS  Article  Google Scholar 

  • 27.

    Mutina, A. R. & Hurlimann, M. D. Effect of oxygen on the NMR relaxation properties of crude oils. Appl. Magn. Reson. 29, 503–516 (2005).

    CAS  Article  Google Scholar 

  • 28.

    Lawson, C. L. & Hanson, R. J. Solving Least Square Problems (Prentice-Hall, Englewood Cliffs, 1974).

    Google Scholar 

  • 29.

    Hirasaki, G. J., Lo, S. & Zhang, Y. NMR properties of petroleum reservoir fluids. Magn. Reson. Imaging 21(3–4), 269–277 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Ferrell, F. T. & Himmelblau, D. M. Diffusion coefficients of nitrogen and oxygen in water. J. Chem. Eng. Data 12(1), 111–115 (1967).

    CAS  Article  Google Scholar 

  • 31.

    Niesar, U., Corongiu, G., Clementi, E. & Bhattacharya, D. K. Molecular dynamics simulations of liquid water using the NCC ab initio potential. J. Phys. Chem. 94(20), 7949–7956 (1991).

    Article  Google Scholar 

  • 32.

    Martin, D., McKenna, H. & Livina, V. The human physiological impact of global deoxygenation. J. Physiol Sci. 67(1), 97–106 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Majid, A., Saidian, M., Prasad, M. & Koh, C. A. Measurement of water droplets in water-in-oil emulsions using low field nuclear magnetic resonance for gas hydrate slurry application. Can. J. Chem. 93(9), 1007–1013 (2015).

    CAS  Article  Google Scholar 

  • 34.

    Scardina, P. & Edwards, M. Prediction and measurement of bubble formation in water treatment. J. Environ. Eng. 17(11), 968–973 (2001).

    Article  Google Scholar 

  • 35.

    Carr, H. & Purcell, E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Meiboom, S. & Gill, D. Modified spin echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 668–691 (1958).

    ADS  Article  Google Scholar 

  • 37.

    Buttler, J. P., Reeds, J. A. & Dawson, S. V. Estimating solution of first kind integral equations with non-negative constraints and optimal smoothing. Siam J. Numer. Anal. 18(3), 381–397 (1981).

    ADS  MathSciNet  Article  Google Scholar 

  • 38.

    Benson, B. B. & Krause, D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Am. Soc. Limnol. Oceanogr. 29(3), 620–632 (1984).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Geng, M. & Duan, Z. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta 74(2010), 5631–5640 (2010).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species