in

Quantifying the effect of genetic, environmental and individual demographic stochastic variability for population dynamics in Plantago lanceolata

  • 1.

    Metcalf, C. J. E. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007).

    PubMed 

    Google Scholar 

  • 2.

    Lande, R., Engen, S. & Saether, B. Stochastic population dynamics in ecology and conservation. (Oxfor University Press, 2003).

  • 3.

    Roughgarden, J. A simple model for population dynamics in stochastic environments. Am. Nat. 109, 713–736 (1975).

    Google Scholar 

  • 4.

    May, R. M. Stability and complexity in model ecosystems (Princeton Univ, 2001).

    MATH 

    Google Scholar 

  • 5.

    Engen, S., Bakke, Ø. & Islam, A. Demographic and Environmental Stochasticity-Concepts and Definitions on JSTOR. Biometrics 54, 840–846 (1998).

    MATH 

    Google Scholar 

  • 6.

    Melbourne, B. a & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–3 (2008).

  • 7.

    Tuljapurkar, S., Steiner, U. K. & Orzack, S. H. Dynamic heterogeneity in life histories. Ecol. Lett. 12, 93–106 (2009).

    PubMed 

    Google Scholar 

  • 8.

    Vindenes, Y. & Engen, S. Demographic stochasticity and temporal autocorrelation in the dynamics of structured populations. Oikos https://doi.org/10.1111/oik.03958 (2017).

    Article 

    Google Scholar 

  • 9.

    Caswell, H. Stage, age and individual stochasticity in demography. Oikos 118, 1763–1782 (2009).

    Google Scholar 

  • 10.

    Steiner, U. K. & Tuljapurkar, S. Neutral theory for life histories and individual variability in fitness components. Proc. Natl. Acad. Sci. USA 109, 4684–4689 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Vindenes, Y. & Langangen, Ø. Individual heterogeneity in life histories and eco-evolutionary dynamics. Ecol. Lett. 18, 417–432 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Snyder, R. E. & Ellner, S. P. Pluck or Luck: Does Trait Variation or Chance Drive Variation in Lifetime Reproductive Success?. Am. Nat. 191, E90–E107 (2018).

    PubMed 

    Google Scholar 

  • 13.

    Steiner, U. K., Tuljapurkar, S. & Orzack, S. H. Dynamic heterogeneity and life history variability in the kittiwake. J. Anim. Ecol. 79, 436–444 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Pennisi, E. The Great Guppy Experiment. Science (80-. ). 337, 904–908 (2012).

  • 15.

    Pajunen, V. I. & Pajunen, I. Long-term dynamics in rock pool Daphnia metapopulations. Ecography (Cop.) 26, 731–738 (2003).

    Google Scholar 

  • 16.

    Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda.. Science 325, 464–467 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Roach, D. A. & Gampe, J. Age-specific demography in Plantago: uncovering age-dependent mortality in a natural population. Am. Nat. 164, 60–69 (2004).

    PubMed 

    Google Scholar 

  • 18.

    Reid, J. M., Nietlisbach, P., Wolak, M. E., Keller, L. F. & Arcese, P. Individuals’ expected genetic contributions to future generations, reproductive value, and short-term metrics of fitness in free-living song sparrows ( Melospiza melodia ). Evol. Lett. 3, 271–285 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Endler, J. A. Natural selection in the wild. Monographs in Population Biology vol. 21 (Princeton University Press, 1986).

  • 20.

    Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010).

    PubMed 

    Google Scholar 

  • 21.

    Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Roach, D. A., Ridley, C. E. & Dudycha, J. L. Longitudinal analysis of Plantago : Age-by-environment interactions reveal aging. Ecology 90, 1427–1433 (2009).

    PubMed 

    Google Scholar 

  • 23.

    Roach, D. A. Age, growth and size interact with stress to determine life span and mortality. Exp. Gerontol. 47, 782–786 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Shefferson, R. P. & Roach, D. A. The triple helix of Plantago lanceolata: Genetics and the environment interact to determine population dynamics. Ecology 93, 793–802 (2012).

    PubMed 

    Google Scholar 

  • 25.

    Coulson, T., Tuljapurkar, S. & Step, T. The dynamics of a quantitative trait in an age-structured population living in a variable environment. Am. Nat. 172, 599–612 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Coulson, T., Tuljapurkar, S. & Childs, D. Z. Using evolutionary demography to link life history theory, quantitative genetics and population ecology. J. Anim. Ecol. 79, 1226–1240 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Lacey, E. P. et al. Multigenerational effects of flowering and fruiting phenology in Plantago lanceolata. Ecology 84, 2462–2475 (2003).

    Google Scholar 

  • 28.

    Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).

    PubMed 

    Google Scholar 

  • 29.

    Fisher, R. The genetical theory of natural selection. (Clarendon, 1930).

  • 30.

    Wright, S. Evolution in Mendelian populations. Genetics 16, 0097–0159 (1931).

    CAS 

    Google Scholar 

  • 31.

    Crow, J. F. & Kimura, M. An introduction to population genetics theory. (1970).

  • 32.

    Merilä, J. & Sheldon, B. Lifetime Reproductive Success and Heritability in Nature. Am. Nat. 155, 301–310 (2000).

    PubMed 

    Google Scholar 

  • 33.

    Kruuk, L. E. et al. Heritability of fitness in a wild mammal population. Proc. Natl. Acad. Sci. U. S. A. 97, 698–703 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Teplitsky, C., Mills, J. a, Yarrall, J. W. & Merilä, J. Heritability of fitness components in a wild bird population. Evolution 63, 716–26 (2009).

  • 35.

    Kruuk, L. E., Merilä, J. & Sheldon, B. C. Phenotypic selection on a heritable size trait revisited. Am. Nat. 158, 557–571 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Sheldon, B. C., Kruuk, L. E. B. & Merilä, J. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57, 406–420 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Merilä, J. & Sheldon, B. C. Short Review Genetic architecture of fitness and non fitness traits : empirical patterns and development of ideas. Heredity (Edinb). 83, (1999).

  • 38.

    Hartl, D. J. & Clark, A. G. Principles of population genetics. (Sinauer, 2007).

  • 39.

    Charlesworth, B. Evolution in age-structured populations. (Cambridge University Press, 1994).

  • 40.

    Kirkwood, T. B. L. et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment?. Mech. Ageing Dev. 126, 439–443 (2005).

    PubMed 

    Google Scholar 

  • 41.

    Finch, C. & Kirkwood, T. B. Chance, Development, and Aging. (Oxford University Press, 2000).

  • 42.

    Schiemer, F. Food Dependence and Energetics of Freeliving Nematodes. II. Life History Parameters of Caenorhabditis briggsae (Nematoda) at Different Levels of Food Supply. Oecologia 54, 122–128 (1982).

  • 43.

    Kennedy, B. K. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127, 1985–1993 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Steiner, U. K. et al. Two stochastic processes shape diverse senescence patterns in a single-cell organism. Evolution (N. Y). 73, 847–857 (2019).

  • 45.

    Jouvet, L., Rodríguez-Rojas, A. & Steiner, U. K. Demographic variability and heterogeneity among individuals within and among clonal bacteria strains. Oikos 127, 728–737 (2018).

    Google Scholar 

  • 46.

    Curtsinger, J., Fukui, H., Townsend, D. & Vaupel, J. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science (80-. ). 258, 461–463 (1992).

  • 47.

    Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).

    Google Scholar 

  • 48.

    Edelfeldt, S., Bengtsson, K. & Dahlgren, J. P. Demographic senescence and effects on population dynamics of a perennial plant. Ecology 100, e02742 (2019).

  • 49.

    van Daalen, S. F. & Caswell, H. Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity. Ecol. Modell. 417, (2020).

  • 50.

    Caswell, H. & Vindenes, Y. Demographic variance in heterogeneous populations: matrix models and sensitivity analysis. Oikos 127, 648–663 (2018).

    Google Scholar 

  • 51.

    Jenouvrier, S., Aubry, L. M., Barbraud, C., Weimerskirch, H. & Caswell, H. Interacting effects of unobserved heterogeneity and individual stochasticity in the life history of the southern fulmar. J. Anim. Ecol. 87, 212–222 (2018).

    PubMed 

    Google Scholar 

  • 52.

    Balázsi, G., Van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science (80-. ). 297, 1183–1186 (2002).

  • 54.

    Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    PubMed 

    Google Scholar 

  • 55.

    Vera, M., Biswas, J., Senecal, A., Singer, R. H. & Park, H. Y. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. Annu. Rev. Genet. 50, 267–291 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Stochastic Switching of Cell Fate in Microbes. Annu. Rev. Microbiol. 69, 381–403 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Ballouz, S., Pena, M., Knight, F., Adams, L. & Gillis, J. The transcriptional legacy of developmental stochasticity. bioRxiv 2019.12.11.873265 (2019) https://doi.org/10.1101/2019.12.11.873265.

  • 58.

    Vogt, G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J. Biosci. 40, 159–204 (2015).

    PubMed 

    Google Scholar 

  • 59.

    Hill, W. G. Effective size of populations with overlapping generations. Theor. Popul. Biol. 3, 278–289 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Engen, S., Lande, R. & Saether, B.-E. Effective Size of a Fluctuating Age-Structured Population. Genetics 170, 941–954 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Vindenes, Y., Engen, S. & Saether, B.-E. Individual heterogeneity in vital parameters and demographic stochasticity. Am. Nat. 171, 455–467 (2008).

    PubMed 

    Google Scholar 

  • 62.

    Engen, S., Lande, R., aether, B.-E. & Weimerskirch, H. Extinction in relation to demographic and environmental stochasticity in age-structured models. Math. Biosci. 195, 210–27 (2005).

  • 63.

    Stearns, S. C. The evolution of life-histories. (Oxford University Press, 1992).

  • 64.

    Kendall, B. E. & Fox, G. a. Variation among Individuals and Reduced Demographic Stochasticity. Conserv. Biol. 16, 109–116 (2002).

  • 65.

    Fox, G. A. & Kendall, B. E. Demographic stochasticity and the variance reduction effect. Ecology 83, 1928–1934 (2002).

    Google Scholar 

  • 66.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Hartemink, N. & Caswell, H. Variance in animal longevity: contributions of heterogeneity and stochasticity. Popul. Ecol. 60, 89–99 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends Ecol. Evol. 21, 451–457 (2006).

    PubMed 

    Google Scholar 

  • 69.

    Ohta, T. & Gillespie, J. Development of Neutral and Nearly Neutral Theories. Theor. Popul. Biol. 49, 128–142 (1996).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • 70.

    Hughes, A. L. Near neutrality: leading edge of the neutral theory of molecular evolution. Ann. N. Y. Acad. Sci. 1133, 162–179 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Comstock, R. E. & Robinson, H. F. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 254–266 (1948).

  • 72.

    Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).

    PubMed 

    Google Scholar 

  • 73.

    Steiner, U. K., Tuljapurkar, S., Coulson, T. & Horvitz, C. Trading stages: life expectancies in structured populations. Exp. Gerontol. 47, 773–781 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    R Core Team, R. A. language and environment for statistical computing. R: A language and environment for statistical computing. R Foundation for Statistical Computing vol. 1 409 (2016).

  • 75.

    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Google Scholar 

  • 76.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  • Dynamic monitoring of urban built-up object expansion trajectories in Karachi, Pakistan with time series images and the LandTrendr algorithm

    Shift in demographic structure and increased reproductive activity of loggerhead turtles in the French Mediterranean Sea revealed by long-term monitoring