in

Quantifying the effect of genetic, environmental and individual demographic stochastic variability for population dynamics in Plantago lanceolata

  • 1.

    Metcalf, C. J. E. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007).

    PubMed 

    Google Scholar 

  • 2.

    Lande, R., Engen, S. & Saether, B. Stochastic population dynamics in ecology and conservation. (Oxfor University Press, 2003).

  • 3.

    Roughgarden, J. A simple model for population dynamics in stochastic environments. Am. Nat. 109, 713–736 (1975).

    Google Scholar 

  • 4.

    May, R. M. Stability and complexity in model ecosystems (Princeton Univ, 2001).

    MATH 

    Google Scholar 

  • 5.

    Engen, S., Bakke, Ø. & Islam, A. Demographic and Environmental Stochasticity-Concepts and Definitions on JSTOR. Biometrics 54, 840–846 (1998).

    MATH 

    Google Scholar 

  • 6.

    Melbourne, B. a & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–3 (2008).

  • 7.

    Tuljapurkar, S., Steiner, U. K. & Orzack, S. H. Dynamic heterogeneity in life histories. Ecol. Lett. 12, 93–106 (2009).

    PubMed 

    Google Scholar 

  • 8.

    Vindenes, Y. & Engen, S. Demographic stochasticity and temporal autocorrelation in the dynamics of structured populations. Oikos https://doi.org/10.1111/oik.03958 (2017).

    Article 

    Google Scholar 

  • 9.

    Caswell, H. Stage, age and individual stochasticity in demography. Oikos 118, 1763–1782 (2009).

    Google Scholar 

  • 10.

    Steiner, U. K. & Tuljapurkar, S. Neutral theory for life histories and individual variability in fitness components. Proc. Natl. Acad. Sci. USA 109, 4684–4689 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Vindenes, Y. & Langangen, Ø. Individual heterogeneity in life histories and eco-evolutionary dynamics. Ecol. Lett. 18, 417–432 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Snyder, R. E. & Ellner, S. P. Pluck or Luck: Does Trait Variation or Chance Drive Variation in Lifetime Reproductive Success?. Am. Nat. 191, E90–E107 (2018).

    PubMed 

    Google Scholar 

  • 13.

    Steiner, U. K., Tuljapurkar, S. & Orzack, S. H. Dynamic heterogeneity and life history variability in the kittiwake. J. Anim. Ecol. 79, 436–444 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Pennisi, E. The Great Guppy Experiment. Science (80-. ). 337, 904–908 (2012).

  • 15.

    Pajunen, V. I. & Pajunen, I. Long-term dynamics in rock pool Daphnia metapopulations. Ecography (Cop.) 26, 731–738 (2003).

    Google Scholar 

  • 16.

    Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda.. Science 325, 464–467 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Roach, D. A. & Gampe, J. Age-specific demography in Plantago: uncovering age-dependent mortality in a natural population. Am. Nat. 164, 60–69 (2004).

    PubMed 

    Google Scholar 

  • 18.

    Reid, J. M., Nietlisbach, P., Wolak, M. E., Keller, L. F. & Arcese, P. Individuals’ expected genetic contributions to future generations, reproductive value, and short-term metrics of fitness in free-living song sparrows ( Melospiza melodia ). Evol. Lett. 3, 271–285 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Endler, J. A. Natural selection in the wild. Monographs in Population Biology vol. 21 (Princeton University Press, 1986).

  • 20.

    Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010).

    PubMed 

    Google Scholar 

  • 21.

    Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Roach, D. A., Ridley, C. E. & Dudycha, J. L. Longitudinal analysis of Plantago : Age-by-environment interactions reveal aging. Ecology 90, 1427–1433 (2009).

    PubMed 

    Google Scholar 

  • 23.

    Roach, D. A. Age, growth and size interact with stress to determine life span and mortality. Exp. Gerontol. 47, 782–786 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Shefferson, R. P. & Roach, D. A. The triple helix of Plantago lanceolata: Genetics and the environment interact to determine population dynamics. Ecology 93, 793–802 (2012).

    PubMed 

    Google Scholar 

  • 25.

    Coulson, T., Tuljapurkar, S. & Step, T. The dynamics of a quantitative trait in an age-structured population living in a variable environment. Am. Nat. 172, 599–612 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Coulson, T., Tuljapurkar, S. & Childs, D. Z. Using evolutionary demography to link life history theory, quantitative genetics and population ecology. J. Anim. Ecol. 79, 1226–1240 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Lacey, E. P. et al. Multigenerational effects of flowering and fruiting phenology in Plantago lanceolata. Ecology 84, 2462–2475 (2003).

    Google Scholar 

  • 28.

    Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).

    PubMed 

    Google Scholar 

  • 29.

    Fisher, R. The genetical theory of natural selection. (Clarendon, 1930).

  • 30.

    Wright, S. Evolution in Mendelian populations. Genetics 16, 0097–0159 (1931).

    CAS 

    Google Scholar 

  • 31.

    Crow, J. F. & Kimura, M. An introduction to population genetics theory. (1970).

  • 32.

    Merilä, J. & Sheldon, B. Lifetime Reproductive Success and Heritability in Nature. Am. Nat. 155, 301–310 (2000).

    PubMed 

    Google Scholar 

  • 33.

    Kruuk, L. E. et al. Heritability of fitness in a wild mammal population. Proc. Natl. Acad. Sci. U. S. A. 97, 698–703 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Teplitsky, C., Mills, J. a, Yarrall, J. W. & Merilä, J. Heritability of fitness components in a wild bird population. Evolution 63, 716–26 (2009).

  • 35.

    Kruuk, L. E., Merilä, J. & Sheldon, B. C. Phenotypic selection on a heritable size trait revisited. Am. Nat. 158, 557–571 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Sheldon, B. C., Kruuk, L. E. B. & Merilä, J. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57, 406–420 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Merilä, J. & Sheldon, B. C. Short Review Genetic architecture of fitness and non fitness traits : empirical patterns and development of ideas. Heredity (Edinb). 83, (1999).

  • 38.

    Hartl, D. J. & Clark, A. G. Principles of population genetics. (Sinauer, 2007).

  • 39.

    Charlesworth, B. Evolution in age-structured populations. (Cambridge University Press, 1994).

  • 40.

    Kirkwood, T. B. L. et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment?. Mech. Ageing Dev. 126, 439–443 (2005).

    PubMed 

    Google Scholar 

  • 41.

    Finch, C. & Kirkwood, T. B. Chance, Development, and Aging. (Oxford University Press, 2000).

  • 42.

    Schiemer, F. Food Dependence and Energetics of Freeliving Nematodes. II. Life History Parameters of Caenorhabditis briggsae (Nematoda) at Different Levels of Food Supply. Oecologia 54, 122–128 (1982).

  • 43.

    Kennedy, B. K. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127, 1985–1993 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Steiner, U. K. et al. Two stochastic processes shape diverse senescence patterns in a single-cell organism. Evolution (N. Y). 73, 847–857 (2019).

  • 45.

    Jouvet, L., Rodríguez-Rojas, A. & Steiner, U. K. Demographic variability and heterogeneity among individuals within and among clonal bacteria strains. Oikos 127, 728–737 (2018).

    Google Scholar 

  • 46.

    Curtsinger, J., Fukui, H., Townsend, D. & Vaupel, J. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science (80-. ). 258, 461–463 (1992).

  • 47.

    Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).

    Google Scholar 

  • 48.

    Edelfeldt, S., Bengtsson, K. & Dahlgren, J. P. Demographic senescence and effects on population dynamics of a perennial plant. Ecology 100, e02742 (2019).

  • 49.

    van Daalen, S. F. & Caswell, H. Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity. Ecol. Modell. 417, (2020).

  • 50.

    Caswell, H. & Vindenes, Y. Demographic variance in heterogeneous populations: matrix models and sensitivity analysis. Oikos 127, 648–663 (2018).

    Google Scholar 

  • 51.

    Jenouvrier, S., Aubry, L. M., Barbraud, C., Weimerskirch, H. & Caswell, H. Interacting effects of unobserved heterogeneity and individual stochasticity in the life history of the southern fulmar. J. Anim. Ecol. 87, 212–222 (2018).

    PubMed 

    Google Scholar 

  • 52.

    Balázsi, G., Van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science (80-. ). 297, 1183–1186 (2002).

  • 54.

    Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    PubMed 

    Google Scholar 

  • 55.

    Vera, M., Biswas, J., Senecal, A., Singer, R. H. & Park, H. Y. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. Annu. Rev. Genet. 50, 267–291 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Stochastic Switching of Cell Fate in Microbes. Annu. Rev. Microbiol. 69, 381–403 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Ballouz, S., Pena, M., Knight, F., Adams, L. & Gillis, J. The transcriptional legacy of developmental stochasticity. bioRxiv 2019.12.11.873265 (2019) https://doi.org/10.1101/2019.12.11.873265.

  • 58.

    Vogt, G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J. Biosci. 40, 159–204 (2015).

    PubMed 

    Google Scholar 

  • 59.

    Hill, W. G. Effective size of populations with overlapping generations. Theor. Popul. Biol. 3, 278–289 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Engen, S., Lande, R. & Saether, B.-E. Effective Size of a Fluctuating Age-Structured Population. Genetics 170, 941–954 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Vindenes, Y., Engen, S. & Saether, B.-E. Individual heterogeneity in vital parameters and demographic stochasticity. Am. Nat. 171, 455–467 (2008).

    PubMed 

    Google Scholar 

  • 62.

    Engen, S., Lande, R., aether, B.-E. & Weimerskirch, H. Extinction in relation to demographic and environmental stochasticity in age-structured models. Math. Biosci. 195, 210–27 (2005).

  • 63.

    Stearns, S. C. The evolution of life-histories. (Oxford University Press, 1992).

  • 64.

    Kendall, B. E. & Fox, G. a. Variation among Individuals and Reduced Demographic Stochasticity. Conserv. Biol. 16, 109–116 (2002).

  • 65.

    Fox, G. A. & Kendall, B. E. Demographic stochasticity and the variance reduction effect. Ecology 83, 1928–1934 (2002).

    Google Scholar 

  • 66.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Hartemink, N. & Caswell, H. Variance in animal longevity: contributions of heterogeneity and stochasticity. Popul. Ecol. 60, 89–99 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends Ecol. Evol. 21, 451–457 (2006).

    PubMed 

    Google Scholar 

  • 69.

    Ohta, T. & Gillespie, J. Development of Neutral and Nearly Neutral Theories. Theor. Popul. Biol. 49, 128–142 (1996).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • 70.

    Hughes, A. L. Near neutrality: leading edge of the neutral theory of molecular evolution. Ann. N. Y. Acad. Sci. 1133, 162–179 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Comstock, R. E. & Robinson, H. F. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 254–266 (1948).

  • 72.

    Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).

    PubMed 

    Google Scholar 

  • 73.

    Steiner, U. K., Tuljapurkar, S., Coulson, T. & Horvitz, C. Trading stages: life expectancies in structured populations. Exp. Gerontol. 47, 773–781 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    R Core Team, R. A. language and environment for statistical computing. R: A language and environment for statistical computing. R Foundation for Statistical Computing vol. 1 409 (2016).

  • 75.

    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Google Scholar 

  • 76.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Energy hackers give a glimpse of a postpandemic future

    An energy-storage solution that flows like soft-serve ice cream