Smith, P. et al. The changing faces of soil organic matter research. Eur. J. Soil Sci. 69, 23–30. https://doi.org/10.1111/ejss.12500 (2018).
Google Scholar
Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34, 139–162 (2002).
Google Scholar
Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature10386 (2011).
Google Scholar
Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68. https://doi.org/10.1038/nature16069 (2015).
Google Scholar
Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534. https://doi.org/10.1038/s41561-020-0612-3 (2020).
Google Scholar
Dong, L. et al. Effect of grazing exclusion and rotational grazing on labile soil organic carbon in north China. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.12952 (2020).
Google Scholar
Leifeld, J. & Kogel-Knabner, I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?. Geoderma 124, 143–155 (2005).
Google Scholar
Poeplau, C. & Don, A. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192, 189–201. https://doi.org/10.1016/j.geoderma.2012.08.003 (2013).
Google Scholar
Besnard, E., Chenu, C., Balesdent, J., Puget, P. & Arrouays, D. Fate of particulate organic matter in soil aggregates during cultivation. Eur. J. Soil Sci. 47, 495–503 (1996).
Google Scholar
von Lützow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57, 426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x (2006).
Google Scholar
Peng, X. H., Zhu, Q. H., Zhang, Z. B. & Hallett, P. D. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biol. Biochem. 109, 81–94. https://doi.org/10.1016/j.soilbio.2017.02.002 (2017).
Google Scholar
Dynarski, K. A., Bossio, D. A. & Scow, K. M. Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon sequestration. Front. Environ. Sci. 8, 1. https://doi.org/10.3389/fenvs.2020.514701 (2020).
Google Scholar
Basile-Doelsch, I., Balesdent, J. & Pellerin, S. Reviews and syntheses: The mechanisms underlying carbon storage in soil. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-49 (2020).
Poeplau, C. et al. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—a comprehensive method comparison. Soil Biol. Biochem. 125, 10–26. https://doi.org/10.1016/j.soilbio.2018.06.025 (2018).
Google Scholar
Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158. https://doi.org/10.1007/s11104-010-0391-5 (2011).
Google Scholar
Steffens, M., Kölbl, A., Schörk, E., Gschrey, B. & Kögel-Knabner, I. Distribution of soil organic matter between fractions and aggregate size classes in grazed semiarid steppe soil profiles. Plant Soil 338, 63–81. https://doi.org/10.1007/s11104-010-0594-9 (2011).
Google Scholar
Soriano-Disla, J. M., Janik, L. J., Rossel, R. A. V., Macdonald, L. M. & McLaughlin, M. J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 49, 139–186. https://doi.org/10.1080/05704928.2013.811081 (2014).
Google Scholar
Stenberg, B., Rossel, R. A. V., Mouazen, A. M. & Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 107(107), 163–215. https://doi.org/10.1016/s0065-2113(10)07005-7 (2010).
Google Scholar
Mouazen, A. M., Steffens, M. & Borisover, M. Reflectance and fluorescence spectroscopy in soil science-Current and future research and developments. Soil Tillage Res. 155, 448–449 (2016).
Google Scholar
Viscarra Rossel, R. A. & Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 148, 71–74. https://doi.org/10.1016/j.agsy.2016.07.001 (2016).
Google Scholar
Nocita, M. et al.. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Adv. Agron. 132, 139–159 (2015)
Google Scholar
Gholizadeh, A., Boruvka, L., Saberioon, M. & Vasat, R. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues. Appl. Spectrosc. 67, 1349–1362. https://doi.org/10.1366/13-07288 (2013).
Google Scholar
Hermansen, C. et al. Complete soil texture is accurately predicted by visible near-infrared spectroscopy. Soil Sci. Soc. Am. J. 81, 758–769. https://doi.org/10.2136/sssaj2017.02.0066 (2017).
Google Scholar
Zimmermann, M., Leifeld, J. & Fuhrer, J. Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biol. Biochem. 39, 224–231. https://doi.org/10.1016/j.soilbio.2006.07.010 (2007).
Google Scholar
Madhavan, D. B. et al. Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy. J. Environ. Manage. 193, 290–299. https://doi.org/10.1016/jjenvman.2017.02.013 (2017).
Google Scholar
St. Luce, M. et al. Rapid determination of soil organic matter quality indicators using visible near infrared reflectance spectroscopy. Geoderma 232–234, 449–458. https://doi.org/10.1016/j.geoderma.2014.05.023 (2014).
Google Scholar
Terhoeven-Urselmans, T., Michel, K., Helfrich, M., Flessa, H. & Ludwig, B. Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 169, 168–174. https://doi.org/10.1002/jpln.200521712 (2006).
Google Scholar
Margenot, A., O’Neill, T., Sommer, R. & Akella, V. Predicting soil permanganate oxidizable carbon (PDXC) by coupling DRIFT spectroscopy and artificial neural networks (ANN). Comput. Electron. Agric. https://doi.org/10.1016/j.compag.2019.105098 (2020).
Google Scholar
Fang, Q. et al. Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: a review. J. Spectrosc. https://doi.org/10.1155/2018/3168974 (2018).
Google Scholar
Shi, P., Castaldi, F., van Wesemael, B. & van Oost, K. Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt. Geoderma https://doi.org/10.1016/j.geoderma.2019.113958 (2020).
Google Scholar
Canasveras, J. C., Barron, V., del Campillo, M. C., Torrent, J. & Gomez, J. A. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma 158, 78–84. https://doi.org/10.1016/j.geoderma.2009.09.004 (2010).
Google Scholar
Hermansen, C. et al. Visible-near-infrared spectroscopy can predict the clay/organic carbon and mineral fines/organic carbon ratios. Soil Sci. Soc. Am. J. 80, 1486–1495. https://doi.org/10.2136/sssaj2016.05.0159 (2016).
Google Scholar
Jaconi, A., Don, A. & Freibauer, A. Prediction of soil organic carbon at the country scale: stratification strategies for near-infrared data. Eur. J. Soil Sci. 68, 919–929. https://doi.org/10.1111/ejss.12485 (2017).
Google Scholar
Jaconi, A., Vos, C. & Don, A. Near infrared spectroscopy as an easy and precise method to estimate soil texture. Geoderma 337, 906–913. https://doi.org/10.1016/j.geoderma.2018.10.038 (2019).
Google Scholar
Riedel, F., Denk, M., Muller, I., Barth, N. & Glasser, C. Prediction of soil parameters using the spectral range between 350 and 15,000 nm: A case study based on the Permanent Soil Monitoring Program in Saxony Germany. Geoderma 315, 188–198. https://doi.org/10.1016/j.geoderma.2017.11.027 (2018).
Google Scholar
Clairotte, M. et al. National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma 276, 41–52. https://doi.org/10.1016/j.geoderma.2016.04.021 (2016).
Google Scholar
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernandez-Ugalde, O. LUCAS soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153. https://doi.org/10.1111/ejss.12499 (2018).
Google Scholar
Stevens, A., Nocita, M., Toth, G., Montanarella, L. & van Wesemael, B. Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy. PLoS ONE 8, 1. https://doi.org/10.1371/journal.pone.0066409 (2013).
Google Scholar
Nocita, M. et al. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 68, 337–347. https://doi.org/10.1016/j.soilbio.2013.10.022 (2014).
Google Scholar
Viscarra Rossel, R. A. & Hicks, W. S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions. Europ. J. Soil Sci. 66, 438–450. https://doi.org/10.1111/ejss.12237 (2015).
Google Scholar
Steffens, M. & Buddenbaum, H. Laboratory imaging spectroscopy of a stagnic Luvisol profile – High resolution soil characterisation, classification and mapping of elemental concentrations. Geoderma 195–196, 122–132 (2013).
Google Scholar
Steffens, M., Kohlpaintner, M. & Buddenbaum, H. Fine spatial resolution mapping of soil organic matter quality in a Histosol profile. Eur. J. Soil Sci. 65, 827–839. https://doi.org/10.1111/ejss.12182 (2014).
Google Scholar
Hobley, E., Steffens, M., Bauke, S. L. & Kogel-Knabner, I. Hotspots of soil organic carbon storage revealed by laboratory hyperspectral imaging. Sci. Rep. 8, 1. https://doi.org/10.1038/s41598-018-31776-w (2018).
Google Scholar
Lucas, M., Pihlap, E., Steffens, M., Vetterlein, D. & Kogel-Knabner, I. Combination of imaging infrared spectroscopy and x-ray computed microtomography for the investigation of bio- and physicochemical processes in structured soils. Front. Environ. Sci. 8, 1. https://doi.org/10.3389/fenvs.2020.00042 (2020).
Google Scholar
Mueller, C. W., Steffens, M. & Buddenbaum, H. Permafrost soil complexity evaluated by laboratory imaging Vis-NIR spectroscopy. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.12927 (2019).
Google Scholar
Schreiner, S., Buddenbaum, H., Emmerling, C. & Steffens, M. VNIR/SWIR laboratory imaging spectroscopy for wall-to-wall mapping of elemental concentrations in soil cores. Photogrammetrie Fernerkundung Geoinformation https://doi.org/10.1127/pfg/2015/0279 (2015).
Google Scholar
Askari, M. S., O’Rourke, S. M. & Holden, N. M. A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon. J. Near Infrared Spectrosc. 26, 133–146. https://doi.org/10.1177/0967033518766668 (2018).
Google Scholar
O’Rourke, S. M. & Holden, N. M. Determination of soil organic matter and carbon fractions in forest top soils using spectral data acquired from visible-near infrared hyperspectral images. Soil Sci. Soc. Am. J. 76, 586–596. https://doi.org/10.2136/sssaj2011.0053 (2012).
Google Scholar
Buddenbaum, H. & Steffens, M. Laboratory imaging spectroscopy of soil profiles. J. Spectral Imag. 2, 1. https://doi.org/10.1255/jsi.2011.a2 (2011).
Google Scholar
Buddenbaum, H. & Steffens, M. Mapping the distribution of chemical properties in soil profiles using laboratory imaging spectroscopy SVM and PLS regression. EARSeL eProc. 11, 25–32 (2012).
Poeplau, C. et al. Stocks of organic carbon in German agricultural soils-Key results of the first comprehensive inventory. J. Plant Nutr. Soil Sci. 183, 665–681. https://doi.org/10.1002/jpln.202000113 (2020).
Google Scholar
Viscarra Rossel, R. A., Lobsey, C. R., Sharman, C., Flick, P. & McLachlan, G. Novel proximal sensing for monitoring soil organic C stocks and condition. Environ. Sci. Technol. 51, 5630–5641. https://doi.org/10.1021/acs.est.7b00889 (2017).
Google Scholar
IUSS Working Group WRB. World reference base for soil resources 2006. Vol. 103 (FAO, 2006).
Steffens, M., Kölbl, A., Totsche, K. U. & Kögel-Knabner, I. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143, 63–72 (2008).
Google Scholar
Hoffmann, C. et al. Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: Synthesis of a 6-year grazing experiment. J. Arid Environ. 135, 50–63. https://doi.org/10.1016/j.jaridenv.2016.08.003 (2016).
Google Scholar
FAO. Guidelines for soil description. 4th edition edn, (FAO, 2006).
Lenhard, K., Baumgartner, A. & Schwarzmaier, T. Independent laboratory characterization of NEO HySpex imaging spectrometers VNIR-1600 and SWIR-320m-e. IEEE Trans. Geosci. Remote Sens. 53, 1828–1841. https://doi.org/10.1109/TGRS.2014.2349737 (2015).
Google Scholar
Peddle, D. R., White, H. P., Soffer, R. J., Miller, J. R. & LeDrew, E. F. Reflectance processing of remote sensing spectroradiometer data. Comput. Geosci. 27, 203–213 (2001).
Google Scholar
Rogass, C. et al. Translational imaging spectroscopy for proximal sensing. Sensors 17, 1857 (2017).
Google Scholar
Steffens, M., Kölbl, A. & Kögel-Knabner, I. Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. Eur. J. Soil Sci. 60, 198–212. https://doi.org/10.1111/j.1365-2389.2008.01104.x (2009).
Google Scholar
Golchin, A., Oades, J. M., Skjemstad, J. O. & Clarke, P. Soil-structure and carbon cycling. Aust. J. Soil Res. 32, 1043–1068 (1994).
Google Scholar
Christensen, B. T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 52, 345–353 (2001).
Google Scholar
Schmidt, M. W. I., Rumpel, C. & Kögel-Knabner, I. Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils. Eur. J. Soil Sci. 50, 87–94 (1999).
Google Scholar
Steffens, M. et al. Spatial variability of topsoils and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR China). J. Plant Nutr. Soil Sci. 172, 78–90. https://doi.org/10.1002/jpln.200700309 (2009).
Google Scholar
Six, J., Gregorich, E. & Koegel-Knabner, I. Landmark Papers: No. 1. Tisdall, J. M. & Oades, J. M. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141–163 Commentary on the impact of the impact of Tisdall & Oades (1982): by J. Six, E. G. Gregorich & I. Kogel-Knabner. European Journal of Soil Science 63, 3–7 (2012).
Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
Google Scholar
Wiesmeier, M. et al. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. Eur. J. Soil Sci. 63, 22–31. https://doi.org/10.1111/j.1365-2389.2011.01418.x (2012).
Google Scholar
McSherry, M. E. & Ritchie, M. E. Effects of grazing on grassland soil carbon: a global review. Glob. Change Biol. 19, 1347–1357. https://doi.org/10.1111/gcb.12144 (2013).
Google Scholar
Viscarra Rossel, R. A. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54. https://doi.org/10.1016/j.geoderma.2009.12.025 (2010).
Google Scholar
Ben-Dor, E., Inbar, Y. & Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 61, 1–15 (1997).
Google Scholar
Delegido, J., Verrelst, J., Rivera, J. P., Ruiz-Verdu, A. & Moreno, J. Brown and green LAI mapping through spectral indices. Int. J. Appl. Earth Obs. Geoinf. 35, 350–358. https://doi.org/10.1016/j.jag.2014.10.001 (2015).
Google Scholar
Viscarra Rossel, R. A., McGlynn, R. N. & McBratney, A. B. Determing the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 137, 70–82. https://doi.org/10.1016/j.geoderma.2006.07.004 (2006).
Google Scholar
Ben-Dor, E. et al. Imaging spectrometry for soil applications. Adv. Agronomy 97, 321. https://doi.org/10.1016/s0065-2113(07)00008-9 (2008).
Google Scholar
Source: Ecology - nature.com