IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (IPCC, 2014).
Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Peñuelas, J. & Filella, I. Responses to a warming world. Science (80-). 294, 793–795 (2001).
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
Google Scholar
Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).
Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).
Google Scholar
Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).
Vanbergen, A. J. et al. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).
Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 285, 20172140 (2018).
Watanabe, M. E. Pollination worries rise as honey bees decline. Science (80-). 265, 1170 (1994).
Google Scholar
Chauzat, M.-P. et al. Demographics of the European apicultural industry. PLoS ONE 8, e79018 (2013).
Google Scholar
Conte, Y. L. & Navajas, M. Climate change: Impact on honey bee populations and diseases. OIE Rev. Sci. Tech. 27, 485–510 (2008).
Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41, 353–363 (2010).
Nürnberger, F., Härtel, S. & Steffan-Dewenter, I. Seasonal timing in honey bee colonies: Phenology shifts affect honey stores and Varroa infestation levels. Oecologia 189, 1121–1131 (2019).
Google Scholar
Traynor, K. S. et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie https://doi.org/10.1007/s13592-016-0431-0 (2016).
Google Scholar
Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. U. S. A. 116, 1792–1801 (2019).
Google Scholar
Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).
Google Scholar
Switanek, M., Crailsheim, K., Truhetz, H. & Brodschneider, R. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Sci. Total Environ. 579, 1581–1587 (2017).
Google Scholar
Genersch, E. et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352 (2010).
Google Scholar
van Dooremalen, C. et al. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS One 7, e36285 (2012).
Google Scholar
Morawetz, L. et al. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS One 14, e0219293 (2019).
Google Scholar
Fries, I., Imdorf, A. & Rosenkranz, P. Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate. Apidologie 37, 564–570 (2006).
Guzmán-Novoa, E. et al. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41, 443–450 (2010).
Giacobino, A. et al. Environment or beekeeping management: What explains better the prevalence of honey bee colonies with high levels of Varroa destructor?. Res. Vet. Sci. 112, 1–6 (2017).
Google Scholar
van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).
Leza, M. M., Miranda-Chueca, M. A. & Purse, B. V. Patterns in Varroa destructor depend on bee host abundance, availability of natural resources, and climate in Mediterranean apiaries. Ecol. Entomol. 41, 542–553 (2016).
Dietemann, V. et al. Standard methods for Varroa research. J. Apic. Res. 52, 1–54 (2013).
Branco, M. R., Kidd, N. A. C. & Pickard, R. S. A comparative evaluation of sampling methods for Varroa destructor (Acari: Varroidae) population estimation. Apidologie 37, 452–461 (2006).
Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20119 (2008).
Google Scholar
Bailey, L. D. & van de Pol, M. climwin: An R toolbox for climate window analysis. PLoS One 11, 1–27 (2016).
Hartig, F. Residual Diagnostics for Hierachical (Multi-Level/Mixed) Regression Models. (2021).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 51 (2014).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
R Core Team. R: A Language and Environment for Statistical Computing. (2021).
Seeley, T. D. & Morse, R. A. The nest of the honey bee (Apis mellifera L.). Insectes Soc. 23, 495–512 (1976).
Calis, J. N. M., Fries, I. & Ryrie, S. C. Population modelling of Varroa jacobsoni Oud. Apidologie 30, 111–124 (1999).
Fries, I., Hansen, H., Imdorf, A. & Rosenkranz, P. Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden. Apidologie 34, 389–397 (2003).
Wilde, J., Fuchs, S., Bratkowski, J. & Siuda, M. Distribution of Varroa destructor between swarms and colonies. J. Apic. Res. 44, 190–194 (2005).
Loftus, J. C., Smith, M. L. & Seeley, T. D. How honey bee colonies survive in the wild: Testing the importance of small nests and frequent swarming. PLoS One 11, 1–11 (2016).
Moretto, G., Goncalves, L. S., De Jong, D. & Bichuette, M. Z. The effects of climate and bee race on Varroa jacobsoni Oud infestations in Brazil. Apidologie 22, 197–203 (1991).
Guzmán-Novoa, E., Vandame, R. & Arechavaleta, M. E. Susceptibility of European and Africanized honey bees (Apis mellifera L.) to Varroa jacobsoni Oud. in Mexico. Apidologie 30, 173–182 (1999).
Ruttner, F. Biogeography and Taxonomy of Honeybees (Springer, 1988). https://doi.org/10.1007/978-3-642-72649-1.
Google Scholar
Adam, B. Breeding the Honeybee: A Contribution to the Science of Bee Breeding (Northern Bee Books, 2013).
Tarpy, D. R., Hatch, S. & Fletcher, D. J. C. The influence of queen age and quality during queen replacement in honeybee colonies. Anim. Behav. 59, 97–101 (2000).
Google Scholar
Simeunovic, P. et al. Nosema ceranae and queen age influence the reproduction and productivity of the honey bee colony. J. Apic. Res. 53, 545–554 (2014).
Akyol, E., Yeninar, H., Karatepe, M., Karatepe, B. & Özkök, D. Effects of queen ages on Varroa (Varroa destructor) infestation level in honey bee (Apis mellifera caucasica) colonies and colony performance. Ital. J. Anim. Sci. 6, 143–149 (2007).
Harris, J. W., Harbo, J. R., Villa, J. D. & Danka, R. G. Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ. Entomol. 32, 1305–1312 (2003).
Kruuk, L. E. B., Osmond, H. L. & Cockburn, A. Contrasting effects of climate on juvenile body size in a Southern Hemisphere passerine bird. Glob. Change Biol. 21, 2929–2941 (2015).
Google Scholar
Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumann, P. Predictive markers of honey bee colony collapse. PLoS One 7, e32151 (2012).
Google Scholar
Peck, D. T., Smith, M. L. & Seeley, T. D. Varroa destructor mites can nimbly climb from flowers onto foraging honey bees. PLoS One 11, e0167798 (2016).
Google Scholar
Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS One 14, e0218392 (2019).
Google Scholar
Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46, 716–727 (2015).
Vetharaniam, I. Predicting reproduction rate of Varroa. Ecol. Model. 224, 11–17 (2012).
Nürnberger, F., Härtel, S. & Steffan-Dewenter, I. The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. PeerJ 6, e4801. https://doi.org/10.7717/peerj.4801 (2018).
Google Scholar
Seeley, T. D. & Visscher, P. K. Survival of honeybees in cold climates: The critical timing of colony growth and reproduction. Ecol. Entomol. 10, 81–88 (1985).
Martin, S. J. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Exp. Appl. Acarol. https://doi.org/10.1007/BF00055033 (1994).
Google Scholar
Martin, S. J. Reproduction of Varroa jacobsoni in cells of Apis mellifera containing one or more mother mites and the distribution of these cells. J. Apic. Res. 34, 187–196 (1995).
Sparks, T. H. et al. Advances in the timing of spring cleaning by the honeybee Apis mellifera in Poland. Ecol. Entomol. 35, 788–791 (2010).
Langowska, A. et al. Long-term effect of temperature on honey yield and honeybee phenology. Int. J. Biometeorol. 61, 1125–1132 (2017).
Google Scholar
Bordier, C. et al. Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera). Sci. Rep. 7, 1–11 (2017).
Google Scholar
Fahrenholz, L., Lamprecht, I. & Schricker, B. Thermal investigations of a honey bee colony: Thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J. Comp. Physiol. B 159, 551–560 (1989).
Villa, J. D., Gentry, C. & Taylor, O. R. Jr. Preliminary observations on thermoregulation, clustering, and energy utilization in African and European Honey Bees. J. Kansas Entomol. Soc. 60, 4–14 (1987).
Anderson, D. L. & Trueman, J. W. H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24, 165–189 (2000).
Google Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen–Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263 (2006).
Google Scholar
Schmickl, T. & Crailsheim, K. Cannibalism and early capping: Strategy of honeybee colonies in times of experimental pollen shortages. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 187, 541–547 (2001).
Google Scholar
Requier, F., Odoux, J. F., Henry, M. & Bretagnolle, V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J. Appl. Ecol. 54, 1161–1170 (2017).
Seeley, T. D. Honeybee Ecology. A Study of Adaptation in Social Life (Princeton University Press, 1985).
Martin, S. J. Ontogenesis of the mite Varroa jacobsoni Oud. in drone brood of the honeybee Apis mellifera L. under natural conditions. Exp. Appl. Acarol. 19, 199–210 (1995).
Google Scholar
Amiri, E., Strand, M. K., Rueppell, O. & Tarpy, D. R. Queen quality and the impact of honey bee diseases on queen health: Potential for interactions between two major threats to colony health. Insects 8, 48 (2017).
Google Scholar
Giacobino, A. et al. Risk factors associated with failures of Varroa treatments in honey bee colonies without broodless period. Apidologie 46, 573–582 (2015).
Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47, 467–482 (2016).
FAO. Good beekeeping practices: Practical manual on how to identify and control the main diseases of the honeybee (Apis mellifera). TECA—Technologies and practices for small agricultural producers. (2020).
Harbo, J. R. Effect of population size on brood production, worker survival and honey gain in colonies of honeybees. J. Apic. Res. 25, 22–29 (1986).
Döke, M. A., McGrady, C. M., Otieno, M., Grozinger, C. M. & Frazier, M. Colony size, rather than geographic origin of stocks, predicts overwintering success in honey bees (Hymenoptera: Apidae) in the Northeastern United States. J. Econ. Entomol. 112, 525–533 (2019).
Google Scholar
Martin, S. J. The role of Varroa and viral pathogens in the collapse of honeybee colonies: A modelling approach. J. Appl. Ecol. 38, 1082–1093 (2001).
Source: Ecology - nature.com