in

Rapid phenotypic change in a polymorphic salamander over 43 years

  • 1.

    Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original in German) 1, 595–708 (1847).

    Google Scholar 

  • 2.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. Trends Ecol. Evol. 26, 285–291 (2011).

    PubMed 

    Google Scholar 

  • 3.

    Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).

    PubMed 

    Google Scholar 

  • 4.

    Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).

    Google Scholar 

  • 5.

    Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. Elife 7, e27166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Mousseau, T. A. Ectotherms follow the converse to Bergmann’s rule. Evolution 51, 630–632 (1997).

    PubMed 

    Google Scholar 

  • 7.

    Ashton, K. G. & Feldman, C. R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 57, 1151–1163 (2003).

    PubMed 

    Google Scholar 

  • 8.

    Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007).

    Google Scholar 

  • 9.

    Adams, D. C. & Church, J. O. Amphibians do not follow Bergmann’s rule. Evolution 62, 413–420 (2008).

    PubMed 

    Google Scholar 

  • 10.

    Angilletta, M. J. Jr. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 333–342 (2003).

    Google Scholar 

  • 11.

    Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).

    ADS 

    Google Scholar 

  • 12.

    Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. M. & Williams, S. E. Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).

    Google Scholar 

  • 13.

    Ohlberger, J. Climate warming and ectotherm body size—from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).

    Google Scholar 

  • 14.

    Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (A Review). Proc. Natl. Acad. Sci. USA 83, 1388–1392 (1986).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Forsman, A., Ahnesjö, J., Caesar, S. & Karisson, M. A model of ecological and evolutionary consequences of color polymorphism. Ecology 89, 34–40 (2008).

    PubMed 

    Google Scholar 

  • 17.

    McLean, C. A. & Stuart-Fox, D. Geographic variation in animal colour polymorphisms and its role in speciation. Biol. Rev. 89, 860–873 (2014).

    PubMed 

    Google Scholar 

  • 18.

    Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).

    Google Scholar 

  • 19.

    Cabe, P. R. et al. Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98, 53–60 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Peterman, W. E. & Semlitsch, R. D. Fine-scale habitat associations of a terrestrial salamander: The role of environmental gradients and implications for population dynamics. PLoS ONE 8, e62184 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Farallo, V. R. & Miles, D. B. The importance of microhabitat: A comparison of two microendemic species of Plethodon to the widespread P. cinereus. Copeia 104, 67–77 (2016).

    Google Scholar 

  • 22.

    Burton, T. M. & Likens, G. E. Salamander populations and biomass in the Hubbard Brook experimental forest, New Hampshire. Copeia 1975, 541–546 (1975).

    Google Scholar 

  • 23.

    Mathis, A. Territories of male and female terrestrial salamanders: Costs, benefits, and intersexual spatial associations. Oecologia 86, 433–440 (1991).

    ADS 
    PubMed 

    Google Scholar 

  • 24.

    Anthony, C. D. & Pfingsten, R. A. Eastern red-backed salamander. Plethodon cinereus (Green 1818). In Amphibians of Ohio. Ohio Biological Survey (eds Pfingsten, R. A. et al.) 335–360 (2013).

  • 25.

    Moore, J.-D. & Ouellet, M. Questioning the use of an amphibian colour morph as an indicator of climate change. Glob. Change Biol. 21, 566–571 (2015).

    ADS 

    Google Scholar 

  • 26.

    Highton, R. Revision of North American salamanders of the genus Plethodon. Bull. Fla. State Mus. 6, 236–367 (1962).

    Google Scholar 

  • 27.

    Acord, M. A., Anthony, C. D. & Hickerson, C. M. Assortative mating in a polymorphic salamander. Copeia 2013, 676–683 (2013).

    Google Scholar 

  • 28.

    Reiter, M. K., Anthony, C. D. & Hickerson, C. A. M. Territorial behavior and ecological divergence in a polymorphic salamander. Copeia 2014, 481–488 (2014).

    Google Scholar 

  • 29.

    Paluh, D. J., Eddy, C., Ivanov, K., Hickerson, C. M. & Anthony, C. D. Selective foraging on ants by a terrestrial polymorphic salamander. Am. Midl. Nat. 174, 265–277 (2015).

    Google Scholar 

  • 30.

    Stuczka, A., Hickerson, C. M. & Anthony, C. D. Niche partitioning along the diet axis in a colour polymorphic population of Eastern Red-backed Salamanders, Plethodon cinereus. Amphibia-Reptilia 37, 283–290 (2016).

    Google Scholar 

  • 31.

    Otaibi, B. W., Johnson, Q. K. & Cosentino, B. J. Postautotomy tail movement differs between colour morphs of the red-backed salamander (Plethodon cinereus). Amphibia-Reptilia 38, 395–399 (2017).

    Google Scholar 

  • 32.

    Hantak, M. M., Brooks, K. M., Hickerson, C. M., Anthony, C. D. & Kuchta, S. R. A spatiotemporal assessment of dietary partitioning between color morphs of a terrestrial salamander. Copeia 108, 727–736 (2020).

    Google Scholar 

  • 33.

    Moreno, G. Behavioral and physiological differentiation between the color morphs of the salamander, Plethodon cinereus. J. Herpetol. 23, 335–341 (1989).

    Google Scholar 

  • 34.

    Anthony, C. D., Venesky, M. D. & Hickerson, C. A. M. Ecological separation in a polymorphic terrestrial salamander. J. Anim. Ecol. 77, 646–653 (2008).

    PubMed 

    Google Scholar 

  • 35.

    Evans, A. E., Urban, M. C. & Jockusck, E. L. Developmental temperature alters color polymorphism but not hatchling size in a woodland salamander. Oecoloiga 192, 909–918 (2020).

    ADS 

    Google Scholar 

  • 36.

    Petruzzi, E. E., Niewiarowski, P. H. & Moore, F. B. G. The role of thermal niche selection in maintenance of a colour polymorphism in redback salamanders (Plethodon cinereus). Front. Zool. 5, 3–10 (2006).

    Google Scholar 

  • 37.

    Muñoz, D. J., Hesed, K. M., Grant, E. H. C. & Miller, D. A. W. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change. Ecol. Evol. 6, 8740–8755 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Lotter, F. & Scott, N. J. Jr. Correlation between climate and distribution of the color morphs of the salamander Plethodon cinereus. Copeia 1977, 681–690 (1977).

    Google Scholar 

  • 39.

    Gibbs, J. P. & Karraker, N. E. Effects of warming conditions in eastern North American forests on Red-Backed Salamander morphology. Conserv. Biol. 20, 913–917 (2006).

    PubMed 

    Google Scholar 

  • 40.

    Cosentino, B. J., Moore, J.-D., Karraker, N. E., Ouellet, M. & Gibbs, J. P. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander. Ecol. Evol. 7, 5426–5434 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Evans, A. E., Forester, B. R., Jockusch, E. L. & Urban, M. C. Salamander morph frequencies do not evolve as predicted in response to 40 years of climate change. Ecography 41, 1687–1697 (2018).

    Google Scholar 

  • 42.

    Vose, R., Easterling, D., Kunkel, K., LeGrande, A. & Wehner, M. Temperature changes in the United States. In (eds Wuebbles, D. J. et al.). Climate Science Special Report: Fourth National Climate Assessment, Vol. 1, 185–206 (2017).

  • 43.

    Highton, R. Correlating costal grooves with trunk vertebrae in salamanders. Copeia 1957, 107–109 (1957).

    Google Scholar 

  • 44.

    Fisher-Reid, C. M. & Wiens, J. J. Is geographic variation within species related to macroevolutionary patterns between species?. J. Evol. Biol. 28, 1502–1515 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Wake, D. B. Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. South. Calif. Acad. Sci. 4, 1–111 (1966).

    Google Scholar 

  • 46.

    Jockush, E. L. Geographic variation and phenotypic plasticity of number of trunk vertebrae in Slender Salamanders, Batrachoseps (Caudata: Plethodontidae). Evolution 51, 1966–1982 (1997).

    Google Scholar 

  • 47.

    Parra-Olea, G. & Wake, D. B. Extreme morphological and ecological homoplasy in tropical salamanders. Proc. Natl. Acad. Sci. USA 98, 7888–7891 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Pike, D. A. & Mitchell, J. C. Burrow-dwelling ecosystem engineers provide thermal refugia throughout the landscape. Anim. Conserv. 16, 694–703 (2013).

    Google Scholar 

  • 49.

    Caruso, N. M., Sears, M. W., Adams, D. C. & Lips, K. R. Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob. Change Biol. 20, 1751–1759 (2014).

    ADS 

    Google Scholar 

  • 50.

    Radomski, T., Hantak, M. M., Brown, A. D. & Kuchta, S. R. Multilocus phylogeography of the Eastern Red-backed Salamander (Plethodon cinereus): Cryptic Appalachian diversity and post-glacial range expansion. Herpetologica 76, 61–73 (2020).

    Google Scholar 

  • 51.

    Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  • 52.

    Hill, A. W. et al. The Notes from Nature tool for unlocking biodiversity records from museum records through citizen science. ZooKeys 209, 219–223 (2012).

    Google Scholar 

  • 53.

    Constable, H., Guralnick, R., Wieczorek, J., Spencer, C. & Peterson, A. T. VertNet: A new model for biodiversity data sharing. PLoS Biol. 8, e1000309 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Guralnick, R. & Constable, H. VertNet: Creating a data-sharing community. Bioscience 60, 258–259 (2010).

    Google Scholar 

  • 55.

    Guralnick, R. P. et al. The importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Hollister, J., Shah, T., Robitaille, A., Beck, M. & Johnson, M. elevatr: Access elevation data from various APIs. R package version 0.3.1. https://doi.org/10.5281/zenodo.4282962 (2020).

  • 58.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).

  • 59.

    Barton, K. Package ‘MuMIn’. Model Selection and Model Averaging Based on Information Criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html (2012).

  • 60.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    ADS 

    Google Scholar 

  • 63.

    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).

    PubMed 

    Google Scholar 

  • 64.

    Fisher-Reid, M. C., Engstrom, T. N., Kuczynski, C. A., Stephens, P. R. & Wiens, J. J. Parapatric divergence of sympatric morphs in a salamander: Incipient speciation on Long Island?. Mol. Ecol. 22, 4681–4694 (2013).

    PubMed 

    Google Scholar 

  • 65.

    Brodie, E. D. III. & Brodie, E. D. Jr. Tetrodotoxin resistance in garter snakes: An evolutionary response of predators to dangerous prey. Evolution 44, 651–659 (1990).

    PubMed 

    Google Scholar 

  • 66.

    Brodie, E. D. Jr., Ridenhour, B. J. & Brodie, E. D. III. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56, 2067–2082 (2002).

    PubMed 

    Google Scholar 

  • 67.

    Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).

    PubMed 

    Google Scholar 

  • 68.

    Siepielski, A. M. et al. Spatial patterns of directional phenotypic selection. Ecol. Lett. 16, 1382–1392 (2013).

    PubMed 

    Google Scholar 

  • 69.

    Thompson, J. N. Coevolution: The geographic mosaic of coevolutionary arms races. Curr. Biol. 15, 992–994 (2005).

    Google Scholar 

  • 70.

    Corl, A., Davis, A. R., Kuchta, S. R. & Sinervo, B. Selective loss of polymorphic mating types is associated with rapid phenotype evolution during morphic speciation. Proc. Natl. Acad. Sci. 107, 4254–4259 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Roulin, A. Melanin-based colour polymorphism responding to climate change. Glob. Change Biol. 20, 3344–3350 (2014).

    ADS 

    Google Scholar 

  • 72.

    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).

    PubMed 

    Google Scholar 

  • 73.

    Delhey, K. Gloger’s rule. Curr. Biol. 27, R689–R691 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).

    Google Scholar 

  • 75.

    Hantak, M. M. & Kuchta, S. R. Predator perception across space and time: Relative camouflage in a colour polymorphic salamander. Biol. J. Linn. Soc. 123, 21–33 (2018).

    Google Scholar 

  • 76.

    Atkinson, D. Temperature and organism size—A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).

    Google Scholar 

  • 77.

    Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).

    PubMed 

    Google Scholar 

  • 78.

    Martof, B. S. & Rose, F. L. Geographic variation in southern populations of Desmognathus ochrophaeus. Am. Midl. Nat. 69, 376–425 (1963).

    Google Scholar 

  • 79.

    Tilley, S. G. Life histories and comparative demography of two salamander populations. Copeia 1980, 806–821 (1980).

    Google Scholar 

  • 80.

    Peterman, W. E., Crawford, J. A. & Hocking, D. J. Effects of elevation on plethodontid salamander body size. Copeia 104, 202–208 (2016).

    Google Scholar 

  • 81.

    Williams, E. E., Highton, R. & Cooper, D. M. Breakdown of polymorphism of the red-backed salamander on Long Island. Evolution 22, 76–86 (1968).

    PubMed 

    Google Scholar 

  • 82.

    Wake, D. B. & Lynch, J. F. The distribution, ecology and evolutionary history of plethodontid salamanders in tropical America. Sci. Bull. Nat. Hist. Mus. Los Angel Cty. 25, 1–65 (1976).

    Google Scholar 

  • 83.

    Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486 (2020).

    PubMed 

    Google Scholar 

  • 84.

    Wake, D. B. Homoplasy: The result of natural selection, or evidence of design limitations?. Am. Nat. 138, 543–567 (1991).

    Google Scholar 

  • 85.

    Farallo, V. R., Wier, R. & Miles, D. B. The bogert effect revisited: Salamander regulatory behaviors are differently constrained by time and space. Ecol. Evol. 8, 11522–11532 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Connette, G. M., Crawford, J. A. & Peterman, W. E. Climate change and shrinking salamanders: Alternative mechanisms for changes in plethodontid salamander body size. Glob. Change Biol. 21, 2834–2843 (2015).

    ADS 

    Google Scholar 

  • 87.

    Karell, P., Ahola, K., Karstinen, T., Valkama, J. & Brommer, J. E. Climate change drives microevolution in a wild bird. Nat. Commun. 2, 208 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • 88.

    Lepetz, V., Massot, M., Chaine, A. S. & Clobert, J. Climate warming and the evolution of morphotypes in a reptile. Glob. Change Biol. 15, 454–466 (2009).

    ADS 

    Google Scholar 

  • 89.

    Panayotova, I. N. & Horth, L. Modeling the impact of climate change on a rare color morph in fish. Ecol. Model. 387, 10–16 (2018).

    Google Scholar 

  • 90.

    Clusella-Trullas, S. & Nielsen, M. The evolution of insect body coloration under changing climates. Curr. Opin. Insect Sci 41, 25–32 (2020).

    PubMed 

    Google Scholar 

  • 91.

    Sullivan, C. N. & Koski, M. H. The effects of climate change on floral anthocyanin polymorphisms. Proc. R. Soc. B Biol. Sci. 288, 20202693 (2021).

    Google Scholar 

  • 92.

    Hugall, A. F. & Stuart-Fox, D. Accelerated speciation in colour-polymorphic birds. Nature 485, 631–634 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 93.

    Gray, S. M. & Mckinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007).

    PubMed 

    Google Scholar 

  • 94.

    Mckinnon, J. S. & Pierotti, M. R. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).

    PubMed 

    Google Scholar 

  • 95.

    Hantak, M. M. et al. Do genetic structure and landscape heterogeneity impact color morph frequency in a polymorphic salamander?. Ecography 42, 1383–1394 (2019).

    Google Scholar 

  • 96.

    U. S. Geological Survey – Gap Analysis Project. Eastern Red-backed Salamander (Plethodon cinereus) aERBSx_CONUS_2001v1 Range Map. https://doi.org/10.5066/F7P26X90 (2017).


  • Source: Ecology - nature.com

    Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

    The reasons behind lithium-ion batteries’ rapid cost decline