Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891 (2002).
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).
Google Scholar
EU Water Framework Directive Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy (2000).
Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
Google Scholar
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
Google Scholar
Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U.S.A. 111, 3251–3256 (2014).
Google Scholar
Stanton, J. C., Shoemaker, K. T., Pearson, R. G. & Akçakaya, H. R. Warning times for species extinctions due to climate change. Glob. Change Biol. 21, 1066–1077 (2015).
Google Scholar
Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2019).
Google Scholar
Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).
Kati, V. et al. Hotspots, complementarity or representativeness? Designing optimal small-scale reserves for biodiversity conservation. Biol. Conserv. 120, 471–480 (2004).
Everall, N. C. et al. Comparability of macroinvertebrate biomonitoring indices of river health derived from semi-quantitative and quantitative methodologies. Ecol. Indic. 78, 437–448 (2017).
Gieswein, A., Hering, D. & Lorenz, A. W. Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Sci. Total Environ. 652, 1290–1301 (2019).
Google Scholar
Coates, S., Waugh, A., Anwar, A. & Robson, M. Efficacy of a multi-metric fish index as an analysis tool for the transitional fish component of the Water Framework Directive. Mar. Pollut. Bull. 55, 225–240 (2007).
Google Scholar
Feld, C. K. & Hering, D. Community structure or function: Effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw. Biol. 52, 1380–1399 (2007).
Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).
Google Scholar
Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).
Google Scholar
Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).
Google Scholar
Thomas, F. et al. Parasites and ecosystem engineering: What roles could they play? Oikos 84, 167 (1999).
Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).
Google Scholar
Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).
Google Scholar
Frainer, A., McKie, B. G., Amundsen, P. A., Knudsen, R. & Lafferty, K. D. Parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260–268 (2018).
Google Scholar
Lafferty, K. D. & Morris, A. K. Altered behavior of parasitized Killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996).
Mouritsen, K. N. & Poulin, R. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, 101–117 (2002).
Marcogliese, D. J. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1, 151–164 (2004).
Lagrue, C. & Poulin, R. Intra- and interspecific competition among helminth parasites: Effects on Coitocaecum parvum life history strategy, size and fecundity. Int. J. Parasitol. 38, 1435–1444 (2008).
Google Scholar
Rosenkranz, M., Poulin, R. & Selbach, C. Behavioural impacts of trematodes on their snail host: Species-specific effects or generalised response? Ethology 124, 790–795 (2018).
Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).
Google Scholar
Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482 (2013).
Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).
Google Scholar
Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).
Google Scholar
Preston, D. L., Orlofske, S. A., Lambden, J. P. & Johnson, P. T. J. Biomass and productivity of trematode parasites in pond ecosystems. J. Anim. Ecol. 82, 509–517 (2013).
Google Scholar
Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE 11, e0149678 (2016).
Google Scholar
Vidal-Martínez, V. M., Pech, D., Sures, B., Purucker, S. T. & Poulin, R. Can parasites really reveal environmental impact? Trends Parasitol. 26, 44–51 (2010).
Google Scholar
Shea, J. et al. The use of parasites as indicators of ecosystem health as compared to insects in freshwater lakes of the Inland Northwest. Ecol. Indic. 13, 184–188 (2012).
Sures, B., Nachev, M., Selbach, C. & Marcogliese, D. J. Parasite responses to pollution: What we know and where we go in ‘environmental parasitology’. Parasit. Vectors 10, 65 (2017).
Google Scholar
Esch, G. W. The transmission of digenetic trematodes: Style, elegance, complexity. Integr. Comp. Biol. 42, 304–312 (2002).
Google Scholar
Byers, J. E., Altman, I., Grosse, A. M., Huspeni, T. C. & Maerz, J. C. Using parasitic trematode larvae to quantify an elusive vertebrate host. Conserv. Biol. 25, 85–93 (2010).
Google Scholar
Moore, C. S., Gittman, R. K., Puckett, B. J., Wellman, E. H. & Blakeslee, A. M. H. If you build it, they will come: Restoration positively influences free-living and parasite diversity in a restored tidal marsh. Food Webs 25, e00167 (2020).
Dougherty, E. R. et al. Paradigms for parasite conservation. Conserv. Biol. 30, 724–733 (2016).
Google Scholar
Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. 250, 108596 (2020).
Kwak, M. L., Heath, A. C. G. & Cardoso, P. Methods for the assessment and conservation of threatened animal parasites. Biol. Conserv. 248, 108696 (2020).
Votýpka, J., Kment, P., Yurchenko, V. & Lukeš, J. Endangered monoxenous trypanosomatid parasites: A lesson from island biogeography. Biodivers. Conserv. 29, 3635–3667 (2020).
Carlson, C. J. et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci. Adv. 3, e1602422 (2017).
Google Scholar
Lafferty, K. D. Biodiversity loss decreases parasite diversity: Theory and patterns. Philos. Trans. R. Soc. B Biol. Sci. 367, 2814–2827 (2012).
Cizauskas, C. A. et al. Parasite vulnerability to climate change: An evidence-based functional trait approach. R. Soc. Open Sci. 4, 160535 (2017).
Google Scholar
Watson, D. M., Milner, K. V. & Leigh, A. Novel application of species richness estimators to predict the host range of parasites. Int. J. Parasitol. 47, 31–39 (2017).
Google Scholar
Vannatta, J. T. & Minchella, D. J. Parasites and their impact on ecosystem nutrient cycling. Trends Parasitol. 34, 452–455 (2018).
Google Scholar
Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B Biol. Sci. 285, 20180072 (2018).
Faltýnková, A. Larval trematodes (Digenea) in molluscs from small water bodies near České Budějovice, Czech Republic. Acta Parasitol. 50, 49–55 (2005).
Żbikowska, E. Digenea species in chosen populations of freshwater snails in northern and central part of Poland. Wiadomości Parazytol. 53, 301–308 (2007).
Schwelm, J., Soldánová, M., Vyhlídalová, T., Sures, B. & Selbach, C. Small but diverse: Larval trematode communities in the small freshwater planorbids Gyraulus albus and Segmentina nitida (Gastropoda: Pulmonata) from the Ruhr River, Germany. Parasitol. Res. 117, 241–255 (2018).
Google Scholar
Selbach, C., Soldánová, M., Feld, C. K., Kostadinova, A. & Sures, B. Hidden parasite diversity in a European freshwater system. Sci. Rep. 10, 2694 (2020).
Google Scholar
Gibson, D. I. & Bray, R. A. The evolutionary expansion and host-parasite relationships of the Digenea. Int. J. Parasitol. 24, 1213–1226 (1994).
Google Scholar
Gordy, M. A., Kish, L., Tarrabain, M. & Hanington, P. C. A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol. Res. 115, 3867–3880 (2016).
Google Scholar
Soldánová, M. et al. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 47, 327–345 (2017).
Google Scholar
Faltýnková, A. & Haas, W. Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): Before and today. Parasitol. Res. 99, 572–582 (2006).
Google Scholar
Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, pulmonata) in Central Europe: A survey of species and key to their identification. Parasite 14, 39–51 (2007).
Google Scholar
Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: A survey of species and key to their identification. Syst. Parasitol. 69, 155–178 (2008).
Google Scholar
Faltýnková, A., Sures, B. & Kostadinova, A. Biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater ecosystems of Europe. Syst. Parasitol. 93, 283–293 (2016).
Google Scholar
Soldánová, M., Selbach, C., Sures, B., Kostadinova, A. & Perez-del-Olmo, A. Larval trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River. Parasit. Vectors 3, 56 (2010).
Google Scholar
Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: Meta-analytical insights into patterns and causal mechanisms. Ecography (Cop.) 37, 689–697 (2014).
Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010).
Google Scholar
Lagrue, C. & Poulin, R. Local diversity reduces infection risk across multiple freshwater host-parasite associations. Freshw. Biol. 60, 2445–2454 (2015).
Song, Z. & Proctor, H. Parasite prevalence in intermediate hosts increases with waterbody age and abundance of final hosts. Oecologia 192, 311–321 (2020).
Google Scholar
Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).
Gopko, M., Mironova, E., Pasternak, A., Mikheev, V. & Taskinen, J. Freshwater mussels (Anodonta anatina) reduce transmission of a common fish trematode (eye fluke, Diplostomum pseudospathaceum). Parasitology 144, 1971–1979 (2017).
Google Scholar
Vielma, S., Lagrue, C., Poulin, R. & Selbach, C. Non-host organisms impact transmission at two different life stages in a marine parasite. Parasitol. Res. 118, 111–117 (2019).
Google Scholar
Kudlai, O., Stunženas, V. & Tkach, V. The taxonomic identity and phylogenetic relationships of Cercaria pugnax and C. helvetica XII (Digenea: Lecithodendriidae) based on morphological and molecular data. Folia Parasitol. (Praha) 62, 1–7 (2015).
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. The sixth mass coextinction: Are most endangered species parasites and mutualists? Proc. R. Soc. B Biol. Sci. 276, 3037–3045 (2009).
Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A. & Sures, B. Integrative taxonomic approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from Europe with a focus on the ‘Diplostomum mergi’ species complex. Parasit. Vectors 8, 300 (2015).
Google Scholar
Marcogliese, D. J. Parasites of the superorganism: Are they indicators of ecosystem health? Int. J. Parasitol. 35, 705–716 (2005).
Google Scholar
MacKenzie, K., Williams, H. H., Williams, B., McVicar, A. H. & Siddall, R. Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv. Parasitol. 35, 85–144 (1995).
Google Scholar
Anderson, T. K. & Sukhdeo, M. V. K. Qualitative community stability determines parasite establishment and richness in estuarine marshes. PeerJ 2013, 1–14 (2013).
Neutel, A. M. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).
Google Scholar
Glöer, P. Süßwassergastropoden Nord- und Mitteleuropas: Mollusca I: Bestimmungsschlüssel, Lebensweise, Verbreitung (ConchBooks, 2002).
Welter-Schultes, F. European Non-marine Molluscs, a Guide for Species Identification (Planet Poster Editions, 2012).
Brühne, M. & Scharbert, A. Die Erschließung des Bienener Altrheins für die Rheinfischfauna. Naturschutz und Biologische Vielfalt (2005).
Hugghins, E. J. Life history of a strigeid trematode, Hysteromorpha triloba (Rudolphi, 1819) Lutz, 1931. II. Sporocyst through adult. Trans. Am. Microsc. Soc. 73, 221 (1954).
Našincová, V. & Scholz, T. The life cycle of Asymphylodora tincae (Modeer 1790) (Trematoda: Monorchiidae): A unique development in monorchiid trematodes. Parasitol. Res. 80, 192–197 (1994).
Google Scholar
Georgieva, S. et al. New cryptic species of the ‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit. Vectors 6, 64 (2013).
Google Scholar
Grabner, D. S. et al. Invaders, natives and their enemies: Distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).
Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575 (1997).
Google Scholar
Niewiadomska, K. Family Cyathocotylidae Mühling, 1898. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 201–214 (CABI Publishing Wallingford & Natural History Museum, 2002).
Möhl, K. et al. Biology of Alaria spp. and human exposition risk to Alaria mesocercariae-a review. Parasitol. Res. 105, 1–15 (2009).
Google Scholar
Brown, R., Soldánová, M., Barrett, J. & Kostadinova, A. Small-scale to large-scale and back: Larval trematodes in Lymnaea stagnalis and Planorbarius corneus in Central Europe. Parasitol. Res. 108, 137–150 (2011).
Google Scholar
Niewiadomska, K. Family Diplostomidae Poirier, 1886. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 167–196 (CABI Publishing Wallingford & Natural History Museum, 2002).
Tkach, V. V., Kudlai, O. & Kostadinova, A. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). Int. J. Parasitol. 46, 171–185 (2016).
Google Scholar
Kostadinova, A. & Gibson, D. A redescription of Uroproctepisthmium bursicola (Creplin, 1837) n. comb. (Digenea: Echinostomatidae), and re-evaluations of the genera Episthmium Lühe, 1909 and Uroproctepisthmium Fischthal & Kuntz, 1976. Syst. Parasitol. 50, 63–67 (2001).
Google Scholar
Kudlai, O. Biology of Neoacanthoparyphium echinatoides (Trematoda, Echinostomatidae) in north-western Priazov’ye (Ukraine). Vestn. Zool. 23, 102–106 (2009).
Selbach, C. et al. Morphological and molecular data for larval stages of four species of Petasiger Dietz, 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic. Syst. Parasitol. 89, 153–166 (2014).
Google Scholar
Bray, R. A. Family Lissorchiidae Magath, 1917. In Keys to the Trematoda Vol. 3 (eds Bray, R. A. et al.) 177–186 (CABI Publishing Wallingford & Natural History Museum, 2008).
Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M. & Kostadinova, A. Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Syst. Parasitol. 88, 37–54 (2014).
Google Scholar
Kanarek, G., Zaleśny, G., Sitko, J. & Tkach, V. V. The systematic position and structure of the genus Leyogonimus Ginetsinskaya, 1948 (Platyhelminthes: Digenea) with comments on the taxonomy of the superfamily Microphalloidea Ward, 1901. Acta Parasitol. 62, 617–624 (2017).
Google Scholar
Tkach, V. V., Snyder, S. D. & Świderski, Z. On the phylogenetic relationships of some members of Macroderoididae and Ochetosomatidae (Digenea, Plagiorchioidea). Acta Parasitol. 46, 267–275 (2001).
Roy, C. L. & St-Louis, V. Spatio-temporal variation in prevalence and intensity of trematodes responsible for waterfowl die-offs in faucet snail-infested waterbodies of Minnesota, USA. Int. J. Parasitol. Parasites Wildl. 6, 162–176 (2017).
Google Scholar
Kostadinova, A. Family Echinostomatidae Looss, 1899. In Keys to the Trematoda Vol. 2 (eds Jones, A. et al.) 9–64 (CABI Publishing Wallingford & Natural History Museum, 2005).
Niewiadomska, K. Family Strigeidae Railliet, 1919. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 231–241 (CABI Publishing & Natural History Museum, 2002).
Source: Ecology - nature.com