in

Rare inventory of trematode diversity in a protected natural reserve

  • 1.

    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891 (2002).

    Google Scholar 

  • 2.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).

    PubMed 

    Google Scholar 

  • 4.

    EU Water Framework Directive Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy (2000).

  • 5.

    Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Google Scholar 

  • 6.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    ADS 

    Google Scholar 

  • 7.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U.S.A. 111, 3251–3256 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Stanton, J. C., Shoemaker, K. T., Pearson, R. G. & Akçakaya, H. R. Warning times for species extinctions due to climate change. Glob. Change Biol. 21, 1066–1077 (2015).

    ADS 

    Google Scholar 

  • 10.

    Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2019).

    ADS 

    Google Scholar 

  • 11.

    Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).

    Google Scholar 

  • 12.

    Kati, V. et al. Hotspots, complementarity or representativeness? Designing optimal small-scale reserves for biodiversity conservation. Biol. Conserv. 120, 471–480 (2004).

    Google Scholar 

  • 13.

    Everall, N. C. et al. Comparability of macroinvertebrate biomonitoring indices of river health derived from semi-quantitative and quantitative methodologies. Ecol. Indic. 78, 437–448 (2017).

    Google Scholar 

  • 14.

    Gieswein, A., Hering, D. & Lorenz, A. W. Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Sci. Total Environ. 652, 1290–1301 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • 15.

    Coates, S., Waugh, A., Anwar, A. & Robson, M. Efficacy of a multi-metric fish index as an analysis tool for the transitional fish component of the Water Framework Directive. Mar. Pollut. Bull. 55, 225–240 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Feld, C. K. & Hering, D. Community structure or function: Effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw. Biol. 52, 1380–1399 (2007).

    Google Scholar 

  • 17.

    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).

    PubMed 

    Google Scholar 

  • 19.

    Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).

    PubMed 

    Google Scholar 

  • 20.

    Thomas, F. et al. Parasites and ecosystem engineering: What roles could they play? Oikos 84, 167 (1999).

    Google Scholar 

  • 21.

    Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).

    PubMed 

    Google Scholar 

  • 22.

    Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).

    PubMed 

    Google Scholar 

  • 23.

    Frainer, A., McKie, B. G., Amundsen, P. A., Knudsen, R. & Lafferty, K. D. Parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260–268 (2018).

    PubMed 

    Google Scholar 

  • 24.

    Lafferty, K. D. & Morris, A. K. Altered behavior of parasitized Killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996).

    Google Scholar 

  • 25.

    Mouritsen, K. N. & Poulin, R. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, 101–117 (2002).

    Google Scholar 

  • 26.

    Marcogliese, D. J. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1, 151–164 (2004).

    Google Scholar 

  • 27.

    Lagrue, C. & Poulin, R. Intra- and interspecific competition among helminth parasites: Effects on Coitocaecum parvum life history strategy, size and fecundity. Int. J. Parasitol. 38, 1435–1444 (2008).

    PubMed 

    Google Scholar 

  • 28.

    Rosenkranz, M., Poulin, R. & Selbach, C. Behavioural impacts of trematodes on their snail host: Species-specific effects or generalised response? Ethology 124, 790–795 (2018).

    Google Scholar 

  • 29.

    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482 (2013).

    Google Scholar 

  • 31.

    Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Preston, D. L., Orlofske, S. A., Lambden, J. P. & Johnson, P. T. J. Biomass and productivity of trematode parasites in pond ecosystems. J. Anim. Ecol. 82, 509–517 (2013).

    PubMed 

    Google Scholar 

  • 34.

    Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE 11, e0149678 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Vidal-Martínez, V. M., Pech, D., Sures, B., Purucker, S. T. & Poulin, R. Can parasites really reveal environmental impact? Trends Parasitol. 26, 44–51 (2010).

    PubMed 

    Google Scholar 

  • 36.

    Shea, J. et al. The use of parasites as indicators of ecosystem health as compared to insects in freshwater lakes of the Inland Northwest. Ecol. Indic. 13, 184–188 (2012).

    Google Scholar 

  • 37.

    Sures, B., Nachev, M., Selbach, C. & Marcogliese, D. J. Parasite responses to pollution: What we know and where we go in ‘environmental parasitology’. Parasit. Vectors 10, 65 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Esch, G. W. The transmission of digenetic trematodes: Style, elegance, complexity. Integr. Comp. Biol. 42, 304–312 (2002).

    PubMed 

    Google Scholar 

  • 39.

    Byers, J. E., Altman, I., Grosse, A. M., Huspeni, T. C. & Maerz, J. C. Using parasitic trematode larvae to quantify an elusive vertebrate host. Conserv. Biol. 25, 85–93 (2010).

    PubMed 

    Google Scholar 

  • 40.

    Moore, C. S., Gittman, R. K., Puckett, B. J., Wellman, E. H. & Blakeslee, A. M. H. If you build it, they will come: Restoration positively influences free-living and parasite diversity in a restored tidal marsh. Food Webs 25, e00167 (2020).

    Google Scholar 

  • 41.

    Dougherty, E. R. et al. Paradigms for parasite conservation. Conserv. Biol. 30, 724–733 (2016).

    MathSciNet 
    PubMed 

    Google Scholar 

  • 42.

    Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. 250, 108596 (2020).

    Google Scholar 

  • 43.

    Kwak, M. L., Heath, A. C. G. & Cardoso, P. Methods for the assessment and conservation of threatened animal parasites. Biol. Conserv. 248, 108696 (2020).

    Google Scholar 

  • 44.

    Votýpka, J., Kment, P., Yurchenko, V. & Lukeš, J. Endangered monoxenous trypanosomatid parasites: A lesson from island biogeography. Biodivers. Conserv. 29, 3635–3667 (2020).

    Google Scholar 

  • 45.

    Carlson, C. J. et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci. Adv. 3, e1602422 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Lafferty, K. D. Biodiversity loss decreases parasite diversity: Theory and patterns. Philos. Trans. R. Soc. B Biol. Sci. 367, 2814–2827 (2012).

    Google Scholar 

  • 47.

    Cizauskas, C. A. et al. Parasite vulnerability to climate change: An evidence-based functional trait approach. R. Soc. Open Sci. 4, 160535 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Watson, D. M., Milner, K. V. & Leigh, A. Novel application of species richness estimators to predict the host range of parasites. Int. J. Parasitol. 47, 31–39 (2017).

    PubMed 

    Google Scholar 

  • 49.

    Vannatta, J. T. & Minchella, D. J. Parasites and their impact on ecosystem nutrient cycling. Trends Parasitol. 34, 452–455 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B Biol. Sci. 285, 20180072 (2018).

    Google Scholar 

  • 51.

    Faltýnková, A. Larval trematodes (Digenea) in molluscs from small water bodies near České Budějovice, Czech Republic. Acta Parasitol. 50, 49–55 (2005).

    Google Scholar 

  • 52.

    Żbikowska, E. Digenea species in chosen populations of freshwater snails in northern and central part of Poland. Wiadomości Parazytol. 53, 301–308 (2007).

    Google Scholar 

  • 53.

    Schwelm, J., Soldánová, M., Vyhlídalová, T., Sures, B. & Selbach, C. Small but diverse: Larval trematode communities in the small freshwater planorbids Gyraulus albus and Segmentina nitida (Gastropoda: Pulmonata) from the Ruhr River, Germany. Parasitol. Res. 117, 241–255 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Selbach, C., Soldánová, M., Feld, C. K., Kostadinova, A. & Sures, B. Hidden parasite diversity in a European freshwater system. Sci. Rep. 10, 2694 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Gibson, D. I. & Bray, R. A. The evolutionary expansion and host-parasite relationships of the Digenea. Int. J. Parasitol. 24, 1213–1226 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Gordy, M. A., Kish, L., Tarrabain, M. & Hanington, P. C. A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol. Res. 115, 3867–3880 (2016).

    PubMed 

    Google Scholar 

  • 57.

    Soldánová, M. et al. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 47, 327–345 (2017).

    PubMed 

    Google Scholar 

  • 58.

    Faltýnková, A. & Haas, W. Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): Before and today. Parasitol. Res. 99, 572–582 (2006).

    PubMed 

    Google Scholar 

  • 59.

    Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, pulmonata) in Central Europe: A survey of species and key to their identification. Parasite 14, 39–51 (2007).

    PubMed 

    Google Scholar 

  • 60.

    Faltýnková, A., Našincová, V. & Kablásková, L. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: A survey of species and key to their identification. Syst. Parasitol. 69, 155–178 (2008).

    PubMed 

    Google Scholar 

  • 61.

    Faltýnková, A., Sures, B. & Kostadinova, A. Biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater ecosystems of Europe. Syst. Parasitol. 93, 283–293 (2016).

    PubMed 

    Google Scholar 

  • 62.

    Soldánová, M., Selbach, C., Sures, B., Kostadinova, A. & Perez-del-Olmo, A. Larval trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River. Parasit. Vectors 3, 56 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: Meta-analytical insights into patterns and causal mechanisms. Ecography (Cop.) 37, 689–697 (2014).

    Google Scholar 

  • 64.

    Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Lagrue, C. & Poulin, R. Local diversity reduces infection risk across multiple freshwater host-parasite associations. Freshw. Biol. 60, 2445–2454 (2015).

    Google Scholar 

  • 66.

    Song, Z. & Proctor, H. Parasite prevalence in intermediate hosts increases with waterbody age and abundance of final hosts. Oecologia 192, 311–321 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • 67.

    Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).

    Google Scholar 

  • 68.

    Gopko, M., Mironova, E., Pasternak, A., Mikheev, V. & Taskinen, J. Freshwater mussels (Anodonta anatina) reduce transmission of a common fish trematode (eye fluke, Diplostomum pseudospathaceum). Parasitology 144, 1971–1979 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Vielma, S., Lagrue, C., Poulin, R. & Selbach, C. Non-host organisms impact transmission at two different life stages in a marine parasite. Parasitol. Res. 118, 111–117 (2019).

    PubMed 

    Google Scholar 

  • 70.

    Kudlai, O., Stunženas, V. & Tkach, V. The taxonomic identity and phylogenetic relationships of Cercaria pugnax and C. helvetica XII (Digenea: Lecithodendriidae) based on morphological and molecular data. Folia Parasitol. (Praha) 62, 1–7 (2015).

    Google Scholar 

  • 71.

    Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. The sixth mass coextinction: Are most endangered species parasites and mutualists? Proc. R. Soc. B Biol. Sci. 276, 3037–3045 (2009).

    Google Scholar 

  • 72.

    Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A. & Sures, B. Integrative taxonomic approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from Europe with a focus on the ‘Diplostomum mergi’ species complex. Parasit. Vectors 8, 300 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Marcogliese, D. J. Parasites of the superorganism: Are they indicators of ecosystem health? Int. J. Parasitol. 35, 705–716 (2005).

    PubMed 

    Google Scholar 

  • 74.

    MacKenzie, K., Williams, H. H., Williams, B., McVicar, A. H. & Siddall, R. Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv. Parasitol. 35, 85–144 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Anderson, T. K. & Sukhdeo, M. V. K. Qualitative community stability determines parasite establishment and richness in estuarine marshes. PeerJ 2013, 1–14 (2013).

    Google Scholar 

  • 76.

    Neutel, A. M. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Glöer, P. Süßwassergastropoden Nord- und Mitteleuropas: Mollusca I: Bestimmungsschlüssel, Lebensweise, Verbreitung (ConchBooks, 2002).

    Google Scholar 

  • 78.

    Welter-Schultes, F. European Non-marine Molluscs, a Guide for Species Identification (Planet Poster Editions, 2012).

    Google Scholar 

  • 79.

    Brühne, M. & Scharbert, A. Die Erschließung des Bienener Altrheins für die Rheinfischfauna. Naturschutz und Biologische Vielfalt (2005).

  • 80.

    Hugghins, E. J. Life history of a strigeid trematode, Hysteromorpha triloba (Rudolphi, 1819) Lutz, 1931. II. Sporocyst through adult. Trans. Am. Microsc. Soc. 73, 221 (1954).

    Google Scholar 

  • 81.

    Našincová, V. & Scholz, T. The life cycle of Asymphylodora tincae (Modeer 1790) (Trematoda: Monorchiidae): A unique development in monorchiid trematodes. Parasitol. Res. 80, 192–197 (1994).

    PubMed 

    Google Scholar 

  • 82.

    Georgieva, S. et al. New cryptic species of the ‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit. Vectors 6, 64 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Grabner, D. S. et al. Invaders, natives and their enemies: Distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Niewiadomska, K. Family Cyathocotylidae Mühling, 1898. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 201–214 (CABI Publishing Wallingford & Natural History Museum, 2002).

    Google Scholar 

  • 86.

    Möhl, K. et al. Biology of Alaria spp. and human exposition risk to Alaria mesocercariae-a review. Parasitol. Res. 105, 1–15 (2009).

    PubMed 

    Google Scholar 

  • 87.

    Brown, R., Soldánová, M., Barrett, J. & Kostadinova, A. Small-scale to large-scale and back: Larval trematodes in Lymnaea stagnalis and Planorbarius corneus in Central Europe. Parasitol. Res. 108, 137–150 (2011).

    PubMed 

    Google Scholar 

  • 88.

    Niewiadomska, K. Family Diplostomidae Poirier, 1886. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 167–196 (CABI Publishing Wallingford & Natural History Museum, 2002).

    Google Scholar 

  • 89.

    Tkach, V. V., Kudlai, O. & Kostadinova, A. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). Int. J. Parasitol. 46, 171–185 (2016).

    PubMed 

    Google Scholar 

  • 90.

    Kostadinova, A. & Gibson, D. A redescription of Uroproctepisthmium bursicola (Creplin, 1837) n. comb. (Digenea: Echinostomatidae), and re-evaluations of the genera Episthmium Lühe, 1909 and Uroproctepisthmium Fischthal & Kuntz, 1976. Syst. Parasitol. 50, 63–67 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Kudlai, O. Biology of Neoacanthoparyphium echinatoides (Trematoda, Echinostomatidae) in north-western Priazov’ye (Ukraine). Vestn. Zool. 23, 102–106 (2009).

    Google Scholar 

  • 92.

    Selbach, C. et al. Morphological and molecular data for larval stages of four species of Petasiger Dietz, 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic. Syst. Parasitol. 89, 153–166 (2014).

    PubMed 

    Google Scholar 

  • 93.

    Bray, R. A. Family Lissorchiidae Magath, 1917. In Keys to the Trematoda Vol. 3 (eds Bray, R. A. et al.) 177–186 (CABI Publishing Wallingford & Natural History Museum, 2008).

    Google Scholar 

  • 94.

    Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M. & Kostadinova, A. Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Syst. Parasitol. 88, 37–54 (2014).

    PubMed 

    Google Scholar 

  • 95.

    Kanarek, G., Zaleśny, G., Sitko, J. & Tkach, V. V. The systematic position and structure of the genus Leyogonimus Ginetsinskaya, 1948 (Platyhelminthes: Digenea) with comments on the taxonomy of the superfamily Microphalloidea Ward, 1901. Acta Parasitol. 62, 617–624 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Tkach, V. V., Snyder, S. D. & Świderski, Z. On the phylogenetic relationships of some members of Macroderoididae and Ochetosomatidae (Digenea, Plagiorchioidea). Acta Parasitol. 46, 267–275 (2001).

    Google Scholar 

  • 97.

    Roy, C. L. & St-Louis, V. Spatio-temporal variation in prevalence and intensity of trematodes responsible for waterfowl die-offs in faucet snail-infested waterbodies of Minnesota, USA. Int. J. Parasitol. Parasites Wildl. 6, 162–176 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Kostadinova, A. Family Echinostomatidae Looss, 1899. In Keys to the Trematoda Vol. 2 (eds Jones, A. et al.) 9–64 (CABI Publishing Wallingford & Natural History Museum, 2005).

    Google Scholar 

  • 99.

    Niewiadomska, K. Family Strigeidae Railliet, 1919. In Keys to the Trematoda Vol. 1 (eds Gibson, D. I. et al.) 231–241 (CABI Publishing & Natural History Museum, 2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Radio-frequency wave scattering improves fusion simulations

    Horizontal gene transfer and adaptive evolution in bacteria