in

Rebound in China’s coastal wetlands following conservation and restoration

  • 1.

    Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    Article 
    CAS 

    Google Scholar 

  • 3.

    Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987 (2020).

    Article 

    Google Scholar 

  • 4.

    Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).

    Article 

    Google Scholar 

  • 6.

    Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci. 1, 117–141 (2009).

    Article 

    Google Scholar 

  • 7.

    Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Cui, B., He, Q., Gu, B., Bai, J. & Liu, X. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36, 1–9 (2016).

    Article 

    Google Scholar 

  • 9.

    Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).

    Article 

    Google Scholar 

  • 10.

    Han, Q., Niu, Z., Wu, M. & Wang, J. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction. Sci. Bull. 64, 456–473 (2019).

    Google Scholar 

  • 11.

    Mao, D. et al. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11–25 (2020).

    Article 

    Google Scholar 

  • 12.

    Wang, X. et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 163, 312–326 (2020).

    Article 

    Google Scholar 

  • 13.

    Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).

    Article 

    Google Scholar 

  • 14.

    Giri, C. et al. Status and distribution of mangrove forests of the world using Earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Article 

    Google Scholar 

  • 15.

    Chen, Y. et al. Effects of reclamation and natural changes on coastal wetlands bordering China’s Yellow Sea from 1984 to 2015. Land Degrad. Dev. 30, 1533–1544 (2019).

    Article 

    Google Scholar 

  • 16.

    Hu, Y. et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS J. Photogramm. Remote Sens. 173, 122–134 (2021).

    Article 

    Google Scholar 

  • 17.

    Zhang, X. et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 247, 111916 (2020).

  • 18.

    Chen, B. Q. et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104–120 (2017).

    Article 

    Google Scholar 

  • 19.

    Hu, L., Li, W. & Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 73, 88–98 (2018).

    Article 

    Google Scholar 

  • 20.

    Jia, M., Wang, Z., Zhang, Y., Mao, D. & Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 73, 535–545 (2018).

    Article 

    Google Scholar 

  • 21.

    Jia, M. et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 255, 112285 (2021).

    Article 

    Google Scholar 

  • 22.

    Ma, T., Li, X., Bai, J. & Cui, B. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 30, 799–810 (2019).

    Article 

    Google Scholar 

  • 23.

    Wang, K. Evolution of Yellow River delta coastline based on remote sensing from 1976 to 2014, China. Chin. Geogr. Sci. 29, 181–191 (2019).

    Article 

    Google Scholar 

  • 24.

    Zhao, Y. F. et al. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 607, 920–932 (2017).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Yim, J. et al. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: the gains or losses in ecosystem services. Environ. Pollut. 241, 74–84 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).

    Google Scholar 

  • 27.

    Chen, Y. et al. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 6, 24018 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Yang, M. et al. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sens. 10, 329 (2018).

  • 29.

    Han, X., Pan, J. & Devlin, A. T. Remote sensing study of wetlands in the Pearl River Delta during 1995–2015 with the support vector machine method. Front. Earth Sci. 12, 521–531 (2018).

    Article 

    Google Scholar 

  • 30.

    Liu, L., Xu, W., Yue, Q., Teng, X. & Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast. Manag. 153, 124–130 (2018).

    Article 

    Google Scholar 

  • 31.

    Yunxuan, Z. et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies. Bull. Chin. Acad. Sci. 31, 1157–1166 (2016).

    Google Scholar 

  • 32.

    Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).

    Article 

    Google Scholar 

  • 33.

    Sun, Z. et al. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 79, 25–41 (2015).

    Article 

    Google Scholar 

  • 34.

    Ren, C. et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 82, 101902 (2019).

  • 35.

    Gu, J. et al. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98–109 (2018).

    Article 

    Google Scholar 

  • 36.

    Wang, W., Liu, H., Li, Y. & Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 102, 415–425 (2014).

    Article 

    Google Scholar 

  • 37.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar 

  • 38.

    Barbier, E. B. A global strategy for protecting vulnerable coastal populations. Science 345, 1250–1251 (2014).

    CAS 
    Article 

    Google Scholar 

  • 39.

    He, Q. et al. Economic development and coastal ecosystem change in China. Sci. Rep. 4, 5995 (2014).

  • 40.

    Zhou, C. et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Sci. China Life Sci. 46, 475–486 (2016).

    Google Scholar 

  • 41.

    Zhang, Q. et al. Propagule types and environmental stresses matter in saltmarsh plant restoration. Ecol. Eng. 143, 105693 (2020).

    Article 

    Google Scholar 

  • 42.

    Cui, B., Yang, Q., Yang, Z. & Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 35, 1090–1103 (2009).

    Article 

    Google Scholar 

  • 43.

    Pan, X. Research on Xi Jinping’s thought of ecological civilization and environment sustainable development. IOP Conf. Ser. Earth Environ. Sci. 153, 062067 (2018).

  • 44.

    Hansen, M. H., Li, H. & Svarverud, R. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change. 53, 195–203 (2018).

    Article 

    Google Scholar 

  • 45.

    Moreno-Mateos, D., Power, M. E., Comín, F. A. & Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).

    CAS 
    Article 

    Google Scholar 

  • 46.

    He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Gong, P., Li, X. & Zhang, W. 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 64, 756–763 (2019).

    Article 

    Google Scholar 

  • 48.

    Wang, X. et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 11, 3471 (2020).

  • 49.

    Zou, Z. H. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Global potential for harvesting drinking water from air using solar energy

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia