Climate Change: Vital Signs of the Planet (NASA, 2021); https://climate.nasa.gov/vital-signs/carbon-dioxide
Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36–43 (2016).
Google Scholar
Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).
Google Scholar
Lee, T. D., Barrott, S. H. & Reich, P. B. Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Glob. Change Biol. 17, 2893–2904 (2011).
Google Scholar
Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).
Google Scholar
Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).
Google Scholar
Sardans, J. et al. Ecometabolomics for a better understanding of plant responses and acclimation to abiotic factors linked to global change. Metabolites 10, 239 (2020).
Google Scholar
Poorter, H. & Navas, M.-L. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol. 157, 175–198 (2003).
Google Scholar
Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).
Google Scholar
Ode, P. J., Johnson, S. N. & Moore, B. D. Atmospheric change and induced plant secondary metabolites—are we reshaping the building blocks of multi-trophic interactions? Curr. Opin. Insect Sci. 5, 57–65 (2014).
Google Scholar
Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).
Google Scholar
Willeit, M., Ganopolski, A., Calov, R. & Brovkin, V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 5, eaav7337 (2019).
Google Scholar
Busch, F. A. & Sage, R. F. The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytol. 213, 1036–1051 (2017).
Google Scholar
Drake, B. G., Gonzàlez-Meler, M. A. & Long, S. P. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609–639 (1997).
Google Scholar
Ziska, L. H., Sicher, R. C., George, K. & Mohan, J. E. Rising atmospheric carbon dioxide and potential impacts on the growth and toxicity of poison ivy (Toxicodendron radicans). Weed Sci. 55, 288–292 (2007).
Google Scholar
Ziska, L. H. & Caulfield, F. A. Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia L.), a known allergy-inducing species: implications for public health. Funct. Plant Biol. 27, 893 (2000).
Google Scholar
Ziska, L. H., Panicker, S. & Wojno, H. L. Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC.). Clim. Change 91, 395 (2008).
Google Scholar
Del Fabbro, C. & Prati, D. The relative importance of immediate allelopathy and allelopathic legacy in invasive plant species. Basic Appl. Ecol. 16, 28–35 (2015).
Google Scholar
Ni, G. et al. Exploring the novel weapons hypothesis with invasive plant species in China. Allelopath. J. 29, 199–214 (2012).
Peñuelas, J. et al. Higher allocation to low cost chemical defenses in Iinvasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).
Google Scholar
Bajwa, A. A., McClay, A. & Adkins, S. W. in Parthenium Weed: Biology, Ecology and Management (eds Adkins, S., Shabbir, A. et al.) 7–39 (CABI, 2019).
Adkins, S. & Shabbir, A. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.): management of parthenium weed. Pest Manag. Sci. 70, 1023–1029 (2014).
Google Scholar
Niranjan, A. et al. Identification and quantification of heterologous compounds parthenin and organic acids in Parthenium hysterophorus L. using HPLC-PDA-MS-MS. Anal. Lett. 46, 48–59 (2013).
Google Scholar
Belz, R. G., van der Laan, M., Reinhardt, C. F. & Hurle, K. Soil degradation of parthenin—does it contradict the role of allelopathy in the invasive weed Parthenium hysterophorus L.? J. Chem. Ecol. 35, 1137–1150 (2009).
Google Scholar
Hanif, Z., Adkins, S. W., Prentis, P. J., Navie, S. C. & O’Donnell, C. J. Characterization of the reproductive behaviour and invasive potential of parthenium weed in Australia. Pak. J. Weed Sci. Res. 18, 767–774 (2012).
Bajwa, A. A., Chauhan, B. S. & Adkins, S. Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environ. Sci. Pollut. Res. 24, 16186–16194 (2017).
Google Scholar
Nguyen, T., Bajwa, A. A., Navie, S., O’Donnell, C. & Adkins, S. Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environ. Sci. Pollut. Res. 24, 10727–10739 (2017).
Google Scholar
Chadwick, M., Trewin, H., Gawthrop, F. & Wagstaff, C. Sesquiterpenoids lactones: benefits to plants and people. Int. J. Mol. Sci. 14, 12780–12805 (2013).
Google Scholar
Ojija, F., Arnold, S. E. J. & Treydte, A. C. Impacts of alien invasive Parthenium hysterophorus on flower visitation by insects to co-flowering plants. Arthropod Plant Interact. 13, 719–734 (2019).
Google Scholar
Bajwa, A. A., Chauhan, B. S. & Adkins, S. W. Germination ecology of two Australian biotypes of ragweed parthenium (Parthenium hysterophorus) relates to their invasiveness. Weed Sci. 66, 62–70 (2018).
Google Scholar
Bajwa, A. A. et al. Toxic potential and metabolic profiling of two Australian biotypes of the invasive plant parthenium weed (Parthenium hysterophorus L.). Toxins 12, 447 (2020).
Google Scholar
Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).
Grime, J. P. in Plant Evolutionary Biology (eds Gottlieb, L. D. & Jain, S. K.) 371–393 (Springer, 1988).
Craine, J. M. Reconciling plant strategy theories of Grime and Tilman. J. Ecol. 93, 1041–1052 (2005).
Google Scholar
Bae, J. et al. Effect of elevated atmospheric carbon dioxide on the allelopathic potential of common ragweed. J. Ecol. Environ. 43, 21 (2019).
Google Scholar
Wang, R.-L. et al. Responses of Mikania micrantha, an invasive weed to elevated CO2: induction of β-caryophyllene synthase, changes in emission capability and allelopathic potential of β-caryophyllene. J. Chem. Ecol. 36, 1076–1082 (2010).
Google Scholar
Robinson, J. M. Photosynthetic carbon metabolism in leaves and isolated chloroplasts from spinach plants grown under short and intermediate photosynthetic periods. Plant Physiol. 75, 397–409 (1984).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Filion, M., Dutilleul, P. & Potvin, C. Optimum experimental design for Free-Air Carbon dioxide Enrichment (FACE) studies. Glob. Change Biol. 6, 843–854 (2000).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://www.jstatsoft.org/article/view/v067i01 (2015).
Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: an alternative to least squares means. Am. Stat. 34, 216–221 (1980).
Source: Ecology - nature.com