in

Recent expansion of marine protected areas matches with home range of grey reef sharks

[adace-ad id="91168"]
  • 1.

    Rasher, D. B., Hoey, A. S. & Hay, M. E. Cascading predator effects in a Fijian coral reef ecosystem. Sci. Rep. 7, 1–10 (2017).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31, 395–407 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. & Meekan, M. G. Caught in the middle: Combined impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS ONE 8, e74648 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Field, I. C., Meekan, M. G., Buckworth, R. C. & Bradshaw, C. J. A. Chapter 4 susceptibility of sharks, rays and chimaeras to global extinction. In Advances in Marine Biology vol. 56 275–363 (Elsevier, 2009).

  • 6.

    MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Ward-Paige, C. A. et al. Large-scale absence of sharks on reefs in the Greater-Caribbean: A footprint of human pressures. PLoS ONE 5(8), e11968 (2010).

  • 8.

    Robbins, W. D., Hisano, M., Connolly, S. R. & Choat, J. H. Ongoing collapse of coral-reef shark populations. Curr. Biol. 16, 2314–2319 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Juhel, J.-B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13007 (2017).

    Article 

    Google Scholar 

  • 10.

    Nadon, M. O. et al. Re-creating missing population baselines for pacific reef sharks. Conserv. Biol. 26, 493–503 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Ferretti, F., Curnick, D., Liu, K., Romanov, E. V. & Block, B. A. Shark baselines and the conservation role of remote coral reef ecosystems. Sci. Adv. 4, eaaq0333 (2018).

  • 12.

    Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. Patterns and ecosystem consequences of shark declines in the ocean: Ecosystem consequences of shark declines. Ecol. Lett. 13, 1055–1071 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl. Acad. Sci. 115, E6116–E6125 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 0040 (2017).

    Article 

    Google Scholar 

  • 15.

    O’Leary, B. C. et al. Effective coverage targets for ocean protection: Effective targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Article 

    Google Scholar 

  • 16.

    Sala, E. et al. Assessing real progress towards effective ocean protection. Mar. Policy 91, 11–13 (2018).

    Article 

    Google Scholar 

  • 17.

    D’agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish. 20, 255–267 (2019).

    Article 

    Google Scholar 

  • 19.

    Juhel, J.-B. et al. Isolation and no-entry marine reserves mitigate anthropogenic impacts on grey reef shark behavior. Sci. Rep. 9, 2897 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Robbins, W. D. Abundance, demography and population structure of the grey reef shark (Carcharhinus amblyrhynchos) and the white tip reef shark (Triaenodon obesus) (Fam. Charcharhinidae). (James Cook University, 2006).

  • 21.

    Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Nillos Kleiven, P. J. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B Biol. Sci. 286, 20182455 (2019).

    Article 

    Google Scholar 

  • 23.

    Gerber, L. R. et al. Population models for marine reserve design: A retrospective and prospective synthesis. Ecol. Appl. 13, 47–64 (2003).

    Article 

    Google Scholar 

  • 24.

    Grüss, A., Kaplan, D. M., Guénette, S., Roberts, C. M. & Botsford, L. W. Consequences of adult and juvenile movement for marine protected areas. Biol. Conserv. 144, 692–702 (2011).

    Article 

    Google Scholar 

  • 25.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Abecasis, D., Afonso, P. & Erzini, K. Combining multispecies home range and distribution models aids assessment of MPA effectiveness. Mar. Ecol. Prog. Ser. 513, 155–169 (2014).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Di Franco, A. et al. Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biol. Conserv. 221, 175–181 (2018).

    Article 

    Google Scholar 

  • 28.

    Krueck, N. C. et al. Reserve sizes needed to protect coral reef fishes: reserve sizes to protect coral reef fishes. Conserv. Lett. 11, e12415 (2018).

  • 29.

    Pittman, S. J. et al. Fish with chips: Tracking reef fish movements to evaluate size and connectivity of Caribbean marine protected areas. PLoS ONE 9, e96028 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Weeks, R., Green, A. L., Joseph, E., Peterson, N. & Terk, E. Using reef fish movement to inform marine reserve design. J. Appl. Ecol. 54, 145–152 (2017).

    Article 

    Google Scholar 

  • 31.

    Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 117–118 (2020).

  • 32.

    Friedlander, A., Sandin, S., DeMartini, E. & Sala, E. Spatial patterns of the structure of reef fish assemblages at a pristine atoll in the central Pacific. Mar. Ecol. Prog. Ser. 410, 219–231 (2010).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Clarke, C., Lea, J. & Ormond, R. Comparative abundance of reef sharks in the Western Indian Ocean. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 (2012).

  • 34.

    Bonnin, L. et al. Repeated long-range migrations of adult males in a common Indo-Pacific reef shark. Coral Reefs https://doi.org/10.1007/s00338-019-01858-w (2019).

    Article 

    Google Scholar 

  • 35.

    Speed, C. W. et al. Reef shark movements relative to a coastal marine protected area. Reg. Stud. Mar. Sci. 3, 58–66 (2016).

    Article 

    Google Scholar 

  • 36.

    Udyawer, V. et al. A standardised framework for analysing animal detections from automated tracking arrays. Anim. Biotelem. 6, 17 (2018).

    Article 

    Google Scholar 

  • 37.

    Brodie, S. et al. Continental-scale animal tracking reveals functional movement classes across marine taxa. Sci. Rep. 8, 3717 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Espinoza, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Residency patterns and movements of grey reef sharks (Carcharhinus amblyrhynchos) in semi-isolated coral reef habitats. Mar. Biol. 162, 343–358 (2015).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Vianna, G. M. S., Meekan, M. G., Meeuwig, J. J. & Speed, C. W. Environmental influences on patterns of vertical movement and site fidelity of grey reef sharks (Carcharhinus amblyrhynchos) at aggregation sites. PLoS ONE 8, e60331 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Barnett, A., Abrantes, K. G., Seymour, J. & Fitzpatrick, R. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation. PLoS ONE 7, e36574 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Field, I. C., Meekan, M. G., Speed, C. W., White, W. & Bradshaw, C. J. A. Quantifying movement patterns for shark conservation at remote coral atolls in the Indian Ocean. Coral Reefs 30, 61–71 (2010).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Heupel, M. R. & Simpfendorfer, C. A. Long-term movement patterns of a coral reef predator. Coral Reefs 34, 679–691 (2015).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Andréfouët, S., Torres-Pulliza, D., Dosdane, M., Kranenburg, C. & Murch, B. Atlas des récifs coralliens de Nouvelle-Calédonie. IFRECOR Nouv.-Caléd. IRD Nouméa 26 (2004).

  • 44.

    Lea, J. S. E., Humphries, N. E., von Brandis, R. G., Clarke, C. R. & Sims, D. W. Acoustic telemetry and network analysis reveal the space use of multiple reef predators and enhance marine protected area design. Proc. R. Soc. B Biol. Sci. 283, 20160717 (2016).

    Article 

    Google Scholar 

  • 45.

    Benhamou, S. & Cornélis, D. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildl. Manag. 74, 1353–1360 (2010).

    Article 

    Google Scholar 

  • 46.

    Fieberg, J. & Börger, L. Could you please phrase “home range” as a question?. J. Mammal. 93, 890–902 (2012).

    Article 

    Google Scholar 

  • 47.

    Heupel, M. R. & Simpfendorfer, C. A. Importance of environmental and biological drivers in the presence and space use of a reef-associated shark. Mar. Ecol. Prog. Ser. 496, 47–57 (2014).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Dwyer, R. G. et al. Using individual-based movement information to identify spatial conservation priorities for mobile species. Conserv. Biol. 33, 1426–1437 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    IUCN, UNEP-WCMC. The World Database on Protected Areas (WDPA). [01/2019]. (UNEP World Conservation Monitoring Centre, Cambridge (UK), 2014). Available at: https://www.protectedplanet.net.

  • 50.

    UNEP-WCMC. Global Distribution of Warm-Water Coral Reefs, Compiled from Multiple Sources Including the Millennium Coral Reef Mapping Project. Version 4.0. (WorldFish Centre, WRI, TNC, 2018).

  • 51.

    Graham, N. A. J., Spalding, M. D. & Sheppard, C. R. C. Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 543–548 (2010).

    Article 

    Google Scholar 

  • 52.

    Davis, K. L. F., Russ, G. R., Williamson, D. H. & Evans, R. D. Surveillance and poaching on inshore reefs of the Great Barrier Reef marine park. Coast. Manag. 32, 373–387 (2004).

    Article 

    Google Scholar 

  • 53.

    D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 54.

    Gaines, S. D., White, C., Carr, M. H. & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. Proc. Natl. Acad. Sci. 107, 18286–18293 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Bessa-Gomes, C., Legendre, S. & Clobert, J. Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol. Lett. 7, 802–812 (2004).

    Article 

    Google Scholar 

  • 56.

    Rankin, D. J. & Kokko, H. Do males matter? The role of males in population dynamics. Oikos 116, 335–348 (2007).

    Article 

    Google Scholar 

  • 57.

    Pratt, H. L. & Carrier, J. C. A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum. Environ. Biol. Fish. 60, 157–188 (2001).

    Article 

    Google Scholar 

  • 58.

    Momigliano, P., Harcourt, R., Robbins, W. D. & Stow, A. Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data. Sci. Rep. 5, 13229 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Momigliano, P. et al. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Heredity 119(3), 142–153 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Bradley, D. et al. Resetting predator baselines in coral reef ecosystems. Sci. Rep. 5, 43131 (2017).

  • 61.

    Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: An understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B 285, 20172456 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Mourier, J., Vercelloni, J. & Planes, S. Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim. Behav. 83, 389–401 (2012).

    Article 

    Google Scholar 

  • 63.

    Mourier, J. et al. Extreme inverted trophic pyramid of reef sharks supported by spawning groupers. Curr. Biol. 26, 2011–2016 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Robbins, W. D. & Renaud, P. Foraging mode of the grey reef shark, Carcharhinus amblyrhynchos, under two different scenarios. Coral Reefs 35, 253–260 (2015).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Devillers, R. et al. Reinventing residual reserves in the sea: Are we favouring ease of establishment over need for protection?. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 480–504 (2015).

    Article 

    Google Scholar 

  • 66.

    Boerder, K., Miller, N. A. & Worm, B. Global hot spots of transshipment of fish catch at sea. Sci. Adv. 4, eaat7159 (2018).

  • 67.

    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Watson, R. A. et al. Marine foods sourced from farther as their use of global ocean primary production increases. Nat. Commun. 6, 7365 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Januchowski-Hartley, F. A., Vigliola, L., Maire, E., Kulbicki, M. & Mouillot, D. Low fuel cost and rising fish price threaten coral reef wilderness. Conserv. Lett. 13, e12706 (2020).

    Article 

    Google Scholar 

  • 70.

    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fish. Aquac. Tech. Pap. 590, 37 (2015).

    Google Scholar 

  • 71.

    Schofield, G. et al. Evidence-based marine protected area planning for a highly mobile endangered marine vertebrate. Biol. Conserv. 161, 101–109 (2013).

  • 72.

    Botsford, L. W., Micheli, F. & Hastings, A. Principles for the design of marine reserves. Ecol. Appl. 13, 25–31 (2003).

    Article 

    Google Scholar 

  • 73.

    Hastings, A. & Botsford, L. W. Comparing designs of marine reserves for fisheries and for biodiversity. Ecol. Appl. 13, 65–70 (2003).

    Article 

    Google Scholar 

  • 74.

    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    CBD. Decisions Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Eighth Meeting (Decision VIII/15, Annex IV). (2006).

  • 76.

    Giakoumi, S. et al. Revisiting “success” and “failure” of marine protected areas: A conservation scientist perspective. Front. Mar. Sci. 5, 223 (2018).

    Article 

    Google Scholar 

  • 77.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Rife, A. N., Erisman, B., Sanchez, A. & Aburto-Oropeza, O. When good intentions are not enough … Insights on networks of “paper park” marine protected areas. Conserv. Lett. 6, 200–212 (2013).

    Article 

    Google Scholar 

  • 79.

    Heupel, M. R., Simpfendorfer, C. A. & Fitzpatrick, R. Large-scale movement and reef fidelity of grey reef sharks. PLoS ONE 5, e9650 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 80.

    Heupel, M. R., Reiss, K. L., Yeiser, B. G. & Simpfendorfer, C. A. Effects of biofouling on performance of moored data logging acoustic receivers. Limnol. Oceanogr. Methods 6, 327–335 (2008).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Arlene Fiore appointed first Stone Professor in Earth, Atmospheric and Planetary Sciences

    Asegun Henry has a big idea for tackling climate change: Store up the sun