in

Reconciling biome-wide conservation of an apex carnivore with land-use economics in the increasingly threatened Pantanal wetlands

  • 1.

    Inskip, C. & Zimmermann, A. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1), 18–34 (2009).

    Google Scholar 

  • 2.

    Weber, W. & Rabinowitz, A. A global perspective on large carnivore conservation. Conserv. Biol. 10(4), 1046–1054 (1996).

    Google Scholar 

  • 3.

    Treves, A. & Karanth, U. K. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17(6), 1491–1499 (2003).

    Google Scholar 

  • 4.

    Romero-Muñoz, A., Morato, R., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18(2), 67–68 (2020).

    Google Scholar 

  • 5.

    Packer, C. et al. Conserving large carnivores: dollars and fence. Ecol. Lett. 16(5), 635–641 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R. & Harmsen, B. Panthera onca. The IUCN Red List of Threatened Species 2017, e.T15953A123791436 (2017).

  • 8.

    Menezes, J. F. S., Tortato, F. R., Oliveira-Santos, L. G., Roque, F. O. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3(8), e477 (2021).

    Google Scholar 

  • 9.

    Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).

    Google Scholar 

  • 10.

    Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16(1), 1–15 (2002).

    Google Scholar 

  • 11.

    De Paula, R. C., Desbiez, A. & Cavalcanti, S. M. C. Plano de Ação Nacional para Conservação da Onça-pintada. Série Espécies Ameaçadas (Instituto Chico Mendes de Conservação da Biodiversidade, Atibaia, 2013).

    Google Scholar 

  • 12.

    Seidl, A. F., Silva, J. S. V. & Moraes, A. S. Cattle ranching and deforestation in the Brazilian Pantanal. Ecol. Econ. 36(3), 413–425 (2001).

    Google Scholar 

  • 13.

    Tomas, W. M. et al. Sustainability agenda for the Pantanal wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30 (2019).

    ADS 

    Google Scholar 

  • 14.

    Tortato, F. R. & Izzo, T. J. Advances and barriers to the development of jaguar-tourism in the Brazilian Pantanal. Perspect. Ecol. Conserv. 15(1), 61–63 (2017).

    Google Scholar 

  • 15.

    Tortato, F. R., Hoogesteijn, R. & Elbroch, M. Have natural disasters created opportunities to initiate Big Cat Tourism in South America?. Biotropica 52(3), 400–403 (2020).

    Google Scholar 

  • 16.

    Quigley, H. & Crawshaw, P. G. Jr. A conservation plan for the jaguar (Panthera onca) in the Pantanal region of Brazil. Biol. Conserv. 61(3), 149–157 (1992).

    Google Scholar 

  • 17.

    Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).

    Google Scholar 

  • 18.

    Junk, W. J. et al. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aqua Sci. 69, 278–309 (2006).

    Google Scholar 

  • 19.

    Guerra, A. et al. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91, 104388 (2020).

    Google Scholar 

  • 20.

    Marengo, J. A. et al. Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Front. Water 3, 1–20 (2021).

    Google Scholar 

  • 21.

    Berlinck, C. N. et al. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Brazilian Journal of Biology 82, e244200 (2021).

    CAS 

    Google Scholar 

  • 22.

    Garcia, L. C. et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: integrative fire management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293, 112870 (2021).

    CAS 

    Google Scholar 

  • 23.

    Libonati, R., Sander, L. A., Peres, L. F., DaCamara, C. C. & Garcia, L. C. Rescue Brazil’s burning Pantanal wetlands. Nature 588, 217–220 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Hoogesteijn, A. & Hoogesteijn, R. Cattle ranching and biodiversity conservation as allies in South America’s flooded savannas. Great Plains Res. 20, 37–50 (2010).

    Google Scholar 

  • 25.

    Ferraz, K. M. P. M. B., Ferraz, S. F. B., De Paula, R. C., Beisiegel, B. & Breitenmoser, C. Species distribution modeling for conservation purposes. Natureza Conservação 10(2), 214–220 (2012).

    Google Scholar 

  • 26.

    Zimmermann, A., Walpole, M. J. & Leader-Williams, N. Cattle ranchers’ attitudes to conflicts with jaguar Panthera onca in the Pantanal of Brazil. Oryx 39(4), 406–412 (2005).

    Google Scholar 

  • 27.

    Marchini, S. & Macdonald, D. W. Predicting rancher’s intention to kill jaguars: case studies in Amazonia and Pantanal. Biol. Conserv. 147(1), 213–221 (2012).

    Google Scholar 

  • 28.

    Abreu, U. G. P., McManus, C. & Santos, A. S. Cattle ranching, conservation and transhumance in Brazilian Pantanal. Pastoralism 1(1), 99–114 (2010).

    Google Scholar 

  • 29.

    Alho, C. J. R. & Sabino, J. A conservation agenda for the Pantanal’s biodiversity. Braz. J. Biol. 71(1), 327–335 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Hoogesteijn, R. et al. Conservación de Jaguares fuera de Áreas Protegidas: Turismo de Observación de Jaguares en Propiedades Privadas en El Pantanal. In Conservación de grandes vertebrados en áreas no protegidas de Colombia, Venezuela y Brasil (eds Payan-Garrido, E. et al.) 259–274 (Panthera. Fundación Herencia Ambiental Caribe e Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Cartagena, 2015).

    Google Scholar 

  • 31.

    Tyagi, A. et al. Physiological stress responses of tigers due to anthropogenic disturbance especially tourism in two central Indian tiger reserves. Conservation Physiology 7(1), coz045 (2020).

    Google Scholar 

  • 32.

    Hayward, M. W. & Hayward, G. J. The impact of tourists on lion Panthera leo behaviour, stress and energetics. Acta Theriol. 54(3), 219–224 (2009).

    Google Scholar 

  • 33.

    Romanach, S., Lindsey, P. A. & Woodroffe, R. Determinants of attitudes towards predators in central Kenya and suggestions for increasing tolerance in livestock dominated landscapes. Oryx 41(2), 185–195 (2007).

    Google Scholar 

  • 34.

    Hemson, G. S., Maclennan, S., Mills, G., Johnson, P. & Macdonald, D. Community, lions, livestock and money: a spatial and social analysis of attitudes to wildlife and the conservation value of tourism in a human–carnivore conflict in Botswana. Biol. Conserv. 142(11), 2718–2725 (2009).

    Google Scholar 

  • 35.

    Mossaz, A., Buckley, R. C. & Castley, J. G. Ecotourism contributions to conservation of African big cats. J. Nat. Conserv. 28, 112–118 (2015).

    Google Scholar 

  • 36.

    Macdonald, C. et al. Conservation potential of apex predator tourism. Biol. Conserv. 215, 132–141 (2017).

    Google Scholar 

  • 37.

    Campos, Z., Mourão, G. & Magnusson, W. Drought drastically reduces suitable habitat for Yacare caiman. Crocodile Specialist Group Newsl. 39(4), 14–16 (2020).

    Google Scholar 

  • 38.

    Marengo, J. A., Oliveira, G. S. & Alves, L. M. Climate change scenarios in the Pantanal. In Dynamics of the Pantanal Wetland in South America (eds Bergier, I. & Assine, M. L.) 227–238 (Springer International Publishing, Heidelberg, 2016).

    Google Scholar 

  • 39.

    Thielen, D. et al. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLOS ONE 15(1), e0227437 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Bergier, I. et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 619, 1116–1125 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 41.

    Araujo, A. et al. Relationships between variability in precipitation, river levels, and beef cattle production in the Brazilian Pantanal. Wetl. Ecol. Manage. 26(5), 829–848 (2018).

    Google Scholar 

  • 42.

    Filho, W. L., Azeiteira, U. M., Salvia, A. L., Fritzen, B. & Libonati, R. Fire in Paradise: why the Pantanal is burning. Environ. Sci. Policy 123, 31–34 (2021).

    Google Scholar 

  • 43.

    Brown, J. L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).

    Google Scholar 

  • 44.

    Morato, R. G. et al. Space use and movement of a Neotropical top predator: the endangered jaguar. PLOS ONE 11(12), e0168176 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).

    Google Scholar 

  • 46.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).

    Google Scholar 

  • 47.

    Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).

    Google Scholar 

  • 48.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40(7), 887–893 (2017).

    Google Scholar 

  • 49.

    Pinto, M. M., Libonati, R., Trigo, R. M., Trigo, I. F. & DaCamara, C. C. A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J. Photogramm. Remote. Sens. 160, 260–274 (2020).

    ADS 

    Google Scholar 

  • 50.

    LASA – Laboratório de Aplicações de Satélites Ambientais. ALARMES – LASA. https://lasa.ufrj.br/alarmes/ (2021).

  • 51.

    Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse (2017).

  • 52.

    Bray, A. et al. infer: Tidy Statistical Inference. R package version 0.5.4. https://cran.r-project.org/web/packages/infer/index.html (2021).

  • 53.

    Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: with Applications in R (Springer, Berlin, 2020).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Nanograins make for a seismic shift

    Hard times tear coupled seabirds apart