in

Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale

  • 1.

    Smol, J. P. et al. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl Acad. Sci. USA 102, 4397–4402 (2005).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Su, H. et al. Long‐term empirical evidence, early warning signals and multiple drivers of regime shifts in a lake ecosystem. J. Ecol. https://doi.org/10.1111/1365-2745.13544 (2020).

  • 6.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. 115, 8252–8259 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Holling, C. S. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article 

    Google Scholar 

  • 9.

    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    Article 

    Google Scholar 

  • 10.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article 

    Google Scholar 

  • 11.

    Holling, C. S. Engineering resilience versus ecological resilience. Eng. Ecol.Constraints 31, 32 (1996).

    Google Scholar 

  • 12.

    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).

    Article 

    Google Scholar 

  • 13.

    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008).

    Article 

    Google Scholar 

  • 16.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456 (2010).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492, 419–422 (2012).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Clements, C. F. & Ozgul, A. Including trait-based early warning signals helps predict population collapse. Nat. Commun. 7, 10984 (2016).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Chevalier, M. & Grenouillet, G. Global assessment of early warning signs that temperature could undergo regime shifts. Sci. Rep. 8, 10058 (2018).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Cole, L. E., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5, 3906 (2014).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Willis, K. J., Jeffers, E. S. & Tovar, C. What makes a terrestrial ecosystem resilient? Science 359, 988–989 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    Article 

    Google Scholar 

  • 26.

    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209 (2012).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Holmgren, M., Hirota, M., Van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Chang. 3, 755–758 (2013).

    Article 

    Google Scholar 

  • 28.

    Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).

    Article 

    Google Scholar 

  • 29.

    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Jha, S., Das, J. & Goyal, M. K. Assessment of risk and resilience of terrestrial ecosystem productivity under the influence of extreme climatic conditions over India. Sci. Rep. 9, 18923 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Li, D., Wu, S., Liu, L., Zhang, Y. & Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Change Biol. 24, 4095–4106 (2018).

    Article 

    Google Scholar 

  • 32.

    Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).

    Article 

    Google Scholar 

  • 33.

    Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).

    Article 

    Google Scholar 

  • 34.

    Stenseth, N. C. et al. The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx. Proc. Natl Acad. Sci. USA 101, 6056–6061 (2004).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Koenig, W. D. & Liebhold, A. M. Temporally increasing spatial synchrony of North American temperature and bird populations. Nat. Clim. Chang. 6, 614–617 (2016).

    Article 

    Google Scholar 

  • 36.

    Sheppard, L. W., Bell, J. R., Harrington, R. & Reuman, D. C. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat. Clim. Chang. 6, 610–613 (2016).

    Article 

    Google Scholar 

  • 37.

    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).

    Article 

    Google Scholar 

  • 38.

    Paruelo, J. M., Epstein, H. E., Lauenroth, W. K. & Burke, I. C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78, 953–958 (1997).

    Article 

    Google Scholar 

  • 39.

    Piao, S., Fang, J., Zhou, L., Tan, K. & Tao, S. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem. Cycles 21, 2 (2007).

    Google Scholar 

  • 40.

    Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    Article 

    Google Scholar 

  • 41.

    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Article 

    Google Scholar 

  • 42.

    Earn, D. J., Levin, S. A. & Rohani, P. Coherence and conservation. Science 290, 1360–1364 (2000).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean,‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).

    Article 

    Google Scholar 

  • 44.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).

    Article 

    Google Scholar 

  • 45.

    Bernstein, L. et al. IPCC, 2007: Climate Change 2007: Synthesis Report. (IPCC, Geneva, 2008)

  • 46.

    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    Article 

    Google Scholar 

  • 47.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).

    Article 

    Google Scholar 

  • 48.

    Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest resilience, biodiversity, and climate change. In Secretariat of the Convention on Biological Diversity, Montreal. Technical Series 43, 1–67 (2009).

    Google Scholar 

  • 49.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Gsell, A. S. et al. Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proc. Natl Acad. Sci. USA 113, E8089–E8095 (2016).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Clements, C. F., Blanchard, J. L., Nash, K. L., Hindell, M. A. & Ozgul, A. Body size shifts and early warning signals precede the historic collapse of whale stocks. Nat. Ecol. Evol. 1, 0188 (2017).

    Article 

    Google Scholar 

  • 52.

    Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B, Biol. Sci. 370, 20130263 (2015).

    Article 

    Google Scholar 

  • 53.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Chang. 8, 539–543 (2018).

    Article 

    Google Scholar 

  • 55.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Ruiz-Pérez, G. & Vico, G. Effects of temperature and water availability on Northern European boreal forests. Front. For. Glob.Change 3, 34 (2020).

    Article 

    Google Scholar 

  • 58.

    Kitzberger, T., Aráoz, E., Gowda, J. H., Mermoz, M. & Morales, J. M. Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts. Ecosystems 15, 97–112 (2012).

    Article 

    Google Scholar 

  • 59.

    Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).

    Article 

    Google Scholar 

  • 61.

    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

    Article 

    Google Scholar 

  • 62.

    Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 1–8 (2017).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Mehrabi, Z. & Ramankutty, N. Synchronized failure of global crop production. Nat. Ecol. Evol. 3, 780–786 (2019).

    Article 

    Google Scholar 

  • 64.

    Post, E. & Forchhammer, M. C. Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend. Proc. Natl Acad. Sci. 101, 9286–9290 (2004).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Ripa, J. Analysing the Moran effect and dispersal: their significance and interaction in synchronous population dynamics. Oikos 89, 175–187 (2000).

    Article 

    Google Scholar 

  • 66.

    Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).

    Article 

    Google Scholar 

  • 67.

    Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    Article 

    Google Scholar 

  • 68.

    Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PloS ONE 7, e41010 (2012).

    CAS 
    Article 

    Google Scholar 

  • 69.

    R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2019).

  • 70.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5-16 https://CRAN.R-project.org/package=rgdal (2020).

  • 71.

    Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article 

    Google Scholar 

  • 72.

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article 

    Google Scholar 

  • 73.

    Holben, B. N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986).

    Article 

    Google Scholar 

  • 74.

    Piao, S. et al. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem. Cycles 19, 2 (2005).

    Article 
    CAS 

    Google Scholar 

  • 75.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 76.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18. (2020).

    Article 

    Google Scholar 

  • 77.

    Mitchell, A. The ESRI Guide to GIS Analysis: Spatial Measurements and Statistics (Environmental System Research Institute Press, 2005).

  • 78.

    Fang, J., Piao, S., He, J. & Ma, W. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China C Life Sci. 47, 229–240 (2004).

    Google Scholar 

  • 79.

    Peng, S. et al. Recent change of vegetation growth trend in China. Environ. Res. Lett. 6, 044027 (2011).

    Article 

    Google Scholar 

  • 80.

    Thenkabail, P. S. & Lyon, J. G. Hyperspectral Remote Sensing of Vegetation (CRC press, 2016).

  • 81.

    Feng, Y. et al. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environ. Res. Lett. 14, 124009 (2019).

    Article 

    Google Scholar 

  • 82.

    He, H. et al. Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Natl Sci. Rev. 6, 505–514 (2019).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification

    Strong variations in urban allergenicity riskscapes due to poor knowledge of tree pollen allergenic potential