in

Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale

  • 1.

    Smol, J. P. et al. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl Acad. Sci. USA 102, 4397–4402 (2005).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Su, H. et al. Long‐term empirical evidence, early warning signals and multiple drivers of regime shifts in a lake ecosystem. J. Ecol. https://doi.org/10.1111/1365-2745.13544 (2020).

  • 6.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. 115, 8252–8259 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Holling, C. S. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article 

    Google Scholar 

  • 9.

    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    Article 

    Google Scholar 

  • 10.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article 

    Google Scholar 

  • 11.

    Holling, C. S. Engineering resilience versus ecological resilience. Eng. Ecol.Constraints 31, 32 (1996).

    Google Scholar 

  • 12.

    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).

    Article 

    Google Scholar 

  • 13.

    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008).

    Article 

    Google Scholar 

  • 16.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456 (2010).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492, 419–422 (2012).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Clements, C. F. & Ozgul, A. Including trait-based early warning signals helps predict population collapse. Nat. Commun. 7, 10984 (2016).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Chevalier, M. & Grenouillet, G. Global assessment of early warning signs that temperature could undergo regime shifts. Sci. Rep. 8, 10058 (2018).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Cole, L. E., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5, 3906 (2014).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Willis, K. J., Jeffers, E. S. & Tovar, C. What makes a terrestrial ecosystem resilient? Science 359, 988–989 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    Article 

    Google Scholar 

  • 26.

    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209 (2012).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Holmgren, M., Hirota, M., Van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Chang. 3, 755–758 (2013).

    Article 

    Google Scholar 

  • 28.

    Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).

    Article 

    Google Scholar 

  • 29.

    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Jha, S., Das, J. & Goyal, M. K. Assessment of risk and resilience of terrestrial ecosystem productivity under the influence of extreme climatic conditions over India. Sci. Rep. 9, 18923 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Li, D., Wu, S., Liu, L., Zhang, Y. & Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Change Biol. 24, 4095–4106 (2018).

    Article 

    Google Scholar 

  • 32.

    Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).

    Article 

    Google Scholar 

  • 33.

    Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).

    Article 

    Google Scholar 

  • 34.

    Stenseth, N. C. et al. The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx. Proc. Natl Acad. Sci. USA 101, 6056–6061 (2004).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Koenig, W. D. & Liebhold, A. M. Temporally increasing spatial synchrony of North American temperature and bird populations. Nat. Clim. Chang. 6, 614–617 (2016).

    Article 

    Google Scholar 

  • 36.

    Sheppard, L. W., Bell, J. R., Harrington, R. & Reuman, D. C. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat. Clim. Chang. 6, 610–613 (2016).

    Article 

    Google Scholar 

  • 37.

    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).

    Article 

    Google Scholar 

  • 38.

    Paruelo, J. M., Epstein, H. E., Lauenroth, W. K. & Burke, I. C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78, 953–958 (1997).

    Article 

    Google Scholar 

  • 39.

    Piao, S., Fang, J., Zhou, L., Tan, K. & Tao, S. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem. Cycles 21, 2 (2007).

    Google Scholar 

  • 40.

    Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    Article 

    Google Scholar 

  • 41.

    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Article 

    Google Scholar 

  • 42.

    Earn, D. J., Levin, S. A. & Rohani, P. Coherence and conservation. Science 290, 1360–1364 (2000).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean,‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).

    Article 

    Google Scholar 

  • 44.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).

    Article 

    Google Scholar 

  • 45.

    Bernstein, L. et al. IPCC, 2007: Climate Change 2007: Synthesis Report. (IPCC, Geneva, 2008)

  • 46.

    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    Article 

    Google Scholar 

  • 47.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).

    Article 

    Google Scholar 

  • 48.

    Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest resilience, biodiversity, and climate change. In Secretariat of the Convention on Biological Diversity, Montreal. Technical Series 43, 1–67 (2009).

    Google Scholar 

  • 49.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Gsell, A. S. et al. Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proc. Natl Acad. Sci. USA 113, E8089–E8095 (2016).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Clements, C. F., Blanchard, J. L., Nash, K. L., Hindell, M. A. & Ozgul, A. Body size shifts and early warning signals precede the historic collapse of whale stocks. Nat. Ecol. Evol. 1, 0188 (2017).

    Article 

    Google Scholar 

  • 52.

    Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B, Biol. Sci. 370, 20130263 (2015).

    Article 

    Google Scholar 

  • 53.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Chang. 8, 539–543 (2018).

    Article 

    Google Scholar 

  • 55.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Ruiz-Pérez, G. & Vico, G. Effects of temperature and water availability on Northern European boreal forests. Front. For. Glob.Change 3, 34 (2020).

    Article 

    Google Scholar 

  • 58.

    Kitzberger, T., Aráoz, E., Gowda, J. H., Mermoz, M. & Morales, J. M. Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts. Ecosystems 15, 97–112 (2012).

    Article 

    Google Scholar 

  • 59.

    Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).

    Article 

    Google Scholar 

  • 61.

    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

    Article 

    Google Scholar 

  • 62.

    Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 1–8 (2017).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Mehrabi, Z. & Ramankutty, N. Synchronized failure of global crop production. Nat. Ecol. Evol. 3, 780–786 (2019).

    Article 

    Google Scholar 

  • 64.

    Post, E. & Forchhammer, M. C. Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend. Proc. Natl Acad. Sci. 101, 9286–9290 (2004).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Ripa, J. Analysing the Moran effect and dispersal: their significance and interaction in synchronous population dynamics. Oikos 89, 175–187 (2000).

    Article 

    Google Scholar 

  • 66.

    Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).

    Article 

    Google Scholar 

  • 67.

    Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    Article 

    Google Scholar 

  • 68.

    Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PloS ONE 7, e41010 (2012).

    CAS 
    Article 

    Google Scholar 

  • 69.

    R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2019).

  • 70.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5-16 https://CRAN.R-project.org/package=rgdal (2020).

  • 71.

    Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article 

    Google Scholar 

  • 72.

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article 

    Google Scholar 

  • 73.

    Holben, B. N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986).

    Article 

    Google Scholar 

  • 74.

    Piao, S. et al. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem. Cycles 19, 2 (2005).

    Article 
    CAS 

    Google Scholar 

  • 75.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 76.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18. (2020).

    Article 

    Google Scholar 

  • 77.

    Mitchell, A. The ESRI Guide to GIS Analysis: Spatial Measurements and Statistics (Environmental System Research Institute Press, 2005).

  • 78.

    Fang, J., Piao, S., He, J. & Ma, W. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China C Life Sci. 47, 229–240 (2004).

    Google Scholar 

  • 79.

    Peng, S. et al. Recent change of vegetation growth trend in China. Environ. Res. Lett. 6, 044027 (2011).

    Article 

    Google Scholar 

  • 80.

    Thenkabail, P. S. & Lyon, J. G. Hyperspectral Remote Sensing of Vegetation (CRC press, 2016).

  • 81.

    Feng, Y. et al. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environ. Res. Lett. 14, 124009 (2019).

    Article 

    Google Scholar 

  • 82.

    He, H. et al. Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Natl Sci. Rev. 6, 505–514 (2019).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic