in

Repeated surveying over 6 years reveals that fine-scale habitat variables are key to tropical mountain ant assemblage composition and functional diversity

  • 1.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science (80-). 333, 1024–1026 (2011).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Chang. 5, 5–31 (2003).

    Article  Google Scholar 

  • 3.

    Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol. Entomol. 42, 105–114 (2017).

    Article  Google Scholar 

  • 4.

    Bentley, L. K., Robertson, M. P. & Barker, N. P. Range contraction to a higher elevation: The likely future of the montane vegetation in South Africa and Lesotho. Biodivers. Conserv. 28, 131–153 (2019).

    Article  Google Scholar 

  • 5.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).

    ADS  Article  Google Scholar 

  • 6.

    Peters, R. L. & Darling, J. D. S. The greenhouse effect and nature reserves. Bioscience 35, 707–717 (1985).

    Article  Google Scholar 

  • 7.

    MacArthur, R. & Wilson, E. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).

    Google Scholar 

  • 8.

    Soliveres, S., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).

    Article  Google Scholar 

  • 9.

    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).

    Article  Google Scholar 

  • 10.

    Thomas, J. A., Rose, R. J., Clarke, R. T., Thomas, C. D. & Webb, N. R. Intraspecific variation in habitat availability among ectothermic animals near their climatic limits and their centres of range. Funct. Ecol. 13, 55–64 (1999).

    CAS  Article  Google Scholar 

  • 11.

    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).

    Article  Google Scholar 

  • 12.

    Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).

    Google Scholar 

  • 13.

    Wilson, E. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).

    Article  Google Scholar 

  • 14.

    Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7, 1221–1244 (1998).

    Article  Google Scholar 

  • 15.

    Seymour, C. & Joseph, G. Ecology of Smaller Animals Associated with Savanna Woody Plants. in Savanna Woody Plants And Large Herbivores (eds. Scogings, P. & Sankaran, M.) 183–212 (2019).

  • 16.

    Palmer, T. M. et al. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science (80-). 319, 192–195 (2008).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Hölldobler, B. & Wilson, E. The Ants (Harvard University Press, Cambridge, 1990).

    Google Scholar 

  • 18.

    Munyai, T. C. & Foord, S. H. Temporal patterns of ant diversity across a mountain with climatically contrasting aspects in the tropics of Africa. PLoS ONE 10, 1–16 (2015).

    Article  CAS  Google Scholar 

  • 19.

    Dunn, R. R., Parker, C. R. & Sanders, N. J. Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages. Biol. J. Linn. Soc. 91, 191–201 (2007).

    Article  Google Scholar 

  • 20.

    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).

    Article  Google Scholar 

  • 21.

    Warren, R. J. & Chick, L. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob. Chang. Biol. 19, 2082–2088 (2013).

    ADS  PubMed  Article  Google Scholar 

  • 22.

    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 2 (2018).

    Article  Google Scholar 

  • 23.

    Joseph, G. S. et al. Microclimates mitigate against hot temperatures in dryland ecosystems: termite mounds as an example. Ecosphere Article e01509 (2016).

  • 24.

    Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: Implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).

    PubMed  Article  Google Scholar 

  • 25.

    Zellweger, F., Roth, T., Bugmann, H. & Bollmann, K. Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Glob. Ecol. Biogeogr. 26, 898–906 (2017).

    Article  Google Scholar 

  • 26.

    Mauda, E. V., Joseph, G. S., Seymour, C. L., Munyai, T. C. & Foord, S. H. Changes in landuse alter ant diversity, assemblage composition and dominant functional groups in African savannas. Biodivers. Conserv. 27, 947–965 (2018).

    Article  Google Scholar 

  • 27.

    Andrew, N. R., Miller, C., Hall, G., Hemmings, Z. & Oliver, I. Aridity and land use negatively influence a dominant species’ upper critical thermal limits. PeerJ 2019, 1–20 (2019).

    Google Scholar 

  • 28.

    Oliver, I., Dorrough, J., Doherty, H. & Andrew, N. R. Additive and synergistic effects of land cover, land use and climate on insect biodiversity. Landsc. Ecol. 31, 2415–2431 (2016).

    Article  Google Scholar 

  • 29.

    Hahn, N. Floristic diversity of the Soutpansberg, Limpopo Province, South Africa (University of Pretoria, Pretoria, 2006).

    Google Scholar 

  • 30.

    Davis, C. & Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa. (2017).

  • 31.

    Joseph, G. S. et al. Stability of Afromontane ant diversity decreases across an elevation gradient. Glob. Ecol. Conserv. 17, e00596 (2019).

    Article  Google Scholar 

  • 32.

    Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).

    Article  Google Scholar 

  • 33.

    Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Tilman, D. Functional Diversity. In Encyclopedia of Biodiversity Vol. 3 (ed. Levin, S. A.) 109–121 (Academic Press, New York, 2001).

    Google Scholar 

  • 35.

    Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article  Google Scholar 

  • 36.

    Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).

    Article  Google Scholar 

  • 37.

    Joseph, G. S. et al. Termite mounds mitigate against 50 years of herbivore-induced reduction of functional diversity of savanna woody plants. Landsc. Ecol. 30, 2161–2174 (2015).

    Article  Google Scholar 

  • 38.

    Díaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    Article  Google Scholar 

  • 39.

    Modiba, R. V., Joseph, G. S., Seymour, C. L., Fouché, P. & Foord, S. H. Restoration of riparian systems through clearing of invasive plant species improves functional diversity of Odonate assemblages. Biol. Conserv. 214, 46–54 (2017).

    Article  Google Scholar 

  • 40.

    Van Wyk, A. & Smith, G. Regions of Floristic Endemism in Southern Africa: A Review with Emphasis on Succulents (Umdaus press, Umdaus, 2001).

    Google Scholar 

  • 41.

    Mostert, T., Bredenkamp, G., Klopper, H. & Al, E. Major vegetation types of the Soutpansberg conservancy and the Blouberg nature reserve, South Africa. Koedoe 50, 32–48 (2008).

    Article  Google Scholar 

  • 42.

    Mucina, L. & Rutherford, M. C. The vegetation of South Africa, Lesotho and Swaziland. (2011).

  • 43.

    McKillup, S. Statistics Explained: An Introductory Guide for Life Scientists (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  • 44.

    Yates, M., Andrew, N., Binns, M. & Gibb, H. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ 2, e271 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Schofield, S. F., Bishop, T. R. & Parr, C. L. Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecol. News 23, 129–137 (2016).

    Google Scholar 

  • 46.

    Colwell, R. K. EstimateS: Statistical estimation of species richness and shared species from samples. (2006).

  • 47.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Article  Google Scholar 

  • 48.

    Baselga, A. & Orme, C. D. L. Betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article  Google Scholar 

  • 49.

    Wang, Y., Naumann, U., Eddelbuettel, D. & Warton, D. mvabund: statistical methods for analysing multivariate abundance data. R package version 3.13.1. (2018).

  • 50.

    Warton, D. I., Foster, S. D., Death, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).

    Article  Google Scholar 

  • 51.

    Warton, D. I., Thibaut, L. & Wang, Y. A. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, 1–19 (2017).

    Article  CAS  Google Scholar 

  • 52.

    Hui, F. boral: Bayesian Ordination and Regression AnaLysis. R package version 1.6.1. (2018).

  • 53.

    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    PubMed  Article  Google Scholar 

  • 54.

    Weber, N. The biology of the fungus-growing ants. Part IV. Additional new forms. Rev. Entomol. 9, 154–206 (1938).

    Google Scholar 

  • 55.

    Laliberté, E. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package 1.0–11. (2011).

  • 56.

    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. Biol. Sci. 269, 1721–1727 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Kembel, S. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  Google Scholar 

  • 58.

    Gotelli, N. J. & Rohde, K. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol. Lett. 5, 86–94 (2002).

    Article  Google Scholar 

  • 59.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team, . nlme: Linear and Nonlinear Mixed Effects Models. (2016).

  • 60.

    Kamil Barton. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).

  • 61.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecological Modelling vol. 172 (2002).

  • 62.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  • 63.

    Didham, R., Kapos, V. & Ewers, R. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012).

    Article  Google Scholar 

  • 64.

    Niu, K. et al. Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 182, 106–112 (2014).

    Article  Google Scholar 

  • 65.

    Joseph, G. S. et al. Elephants, termites and mound thermoregulation in a progressively warmer world. Landsc. Ecol. 33, 731–742 (2018).

    Article  Google Scholar 

  • 66.

    Bishop, T. R. et al. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Glob. Chang. Biol. 25, 2162–2173 (2019).

    ADS  PubMed  Article  Google Scholar 

  • 67.

    Prentice, I. C. et al. Dynamic global vegetation modeling: Quantifying terrestrial ecosystem responses to large-scale environmental change. Terrest. Ecosyst. Chang. World https://doi.org/10.1007/978-3-540-32730-1_15 (2007).

    Article  Google Scholar 

  • 68.

    Pfeiffer, M., Kumar, D., Martens, C. & Scheiter, S. Climate change will cause non-analogue vegetation states in Africa and commit vegetation to long-term change. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-179 (2020).

    Article  Google Scholar 

  • 69.

    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Chang. Biol. 19, 2932–2939 (2013).

    ADS  PubMed  Article  Google Scholar 

  • 70.

    Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Chang. Biol. 20, 495–503 (2014).

    ADS  PubMed  Article  Google Scholar 

  • 71.

    Bonachela, J. A. et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science (80-). 347, 651–655 (2015).

    ADS  CAS  Article  Google Scholar 

  • 72.

    Joseph, G. S. et al. Landuse change in savannas disproportionately reduces functional diversity of invertebrate predators at the highest trophic levels: Spiders as an example. Ecosystems 21, 930–942 (2018).

    Article  Google Scholar 

  • 73.

    Hoerling, M. & Kumar, A. The perfect ocean for drought. Science (80-). 299, 691–694 (2003).

    ADS  CAS  Article  Google Scholar 

  • 74.

    Diffenbaugh, N. S. & Field, B. S. Changes in ecologically critical terrestrial climate conditions. Science (80-). 341, 486–493 (2013).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science (80-). 322, 258–261 (2008).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Fowler, H., Forti, L., Brandão, C. & et al. Ecologia nutricional de formigas. in Ecologia Nutricional de Insetos E Suas Implicações No Manejo de Pragas 131–223 (1991).

  • 77.

    Davidson, D., Cook, S. & Snelling, R. Liquid-feeding performances of ants (Formicidae): Ecological and evolutionary implications. Oecologia 139, 255–266 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 78.

    Sarty, M., Abbott, K. & Lester, P. Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149, 465–473 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 79.

    Kaspari, M. Body size and microclimate use in Neotropical granivorous ants. Oecologia 96, 500–507 (1993).

    ADS  PubMed  Article  Google Scholar 

  • 80.

    Weiser, M. & Kaspari, M. Ecological morphospace of New World ants. Ecol. Entomol. 31, 131–142 (2006).

    Article  Google Scholar 

  • 81.

    Gibb, H. et al. Does morphology predict trophic position and habitat use of ant species and assemblages?. Oecologia 177, 519–531 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 82.

    Gibb, H. & Cl, P. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS ONE 8, e64005 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy