in

Reproduction strategies of the silver birch (Betula pendula Roth) at post-industrial sites

  • 1.

    Stearns, S.C. The Evolution of Life Histories. https://doi.org/10.1046/j.1420-9101.1993.6020304.x (Oxford University Press/Wiley, 1992).

  • 2.

    Dingle, H. The evolution of life histories. in Population Biology (Wöhrmann K., Jain S.K. eds.). https://doi.org/10.1007/978-3-642-74474-7_9 (Springer, 1990).

  • 3.

    Yang, L., Walck, J. L. & El-Kassaby, Yousry, A. Roles of the environment in plant life-history tradeoffs. in Advances in Seed Biology (Jimenez-Lopez, J.C. ed.) 674. https://doi.org/10.5772/intechopen.70312.

  • 4.

    Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond.. Ser. B Biol. Sci. 351, 1291–1298 (1996).

  • 5.

    Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: Implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2006).

    Article 

    Google Scholar 

  • 6.

    Prozherina, N., Freiwald, V., Rousi, M. & Oksanen, E. Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula). New Phytol. 159, 623–636 (2003).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Zvereva, Elena, L., Roitto, M. & Kozlov, M. V. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environ. Rev. 18, 355–367 (2010).

  • 8.

    Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 260, 1623–1639 (2010).

    Article 

    Google Scholar 

  • 9.

    Possen, B. J. H. M. et al. Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. For. Ecol. Manag. 262, 1387–1399 (2011).

  • 10.

    Řehounková, K. & Prach, K. Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel–sand pits. Basic Appl. Ecol. 11, 45–53 (2010).

    Article 

    Google Scholar 

  • 11.

    Franiel, I. The Biology and Ecology of Betula pendula Roth on Post-Industrial Waste Dumping Grounds: The Variability Range of Life History Traits (Silesia University, 2012).

    Google Scholar 

  • 12.

    Kompała-Ba̧ba, A. & Ba̧ba, W. Participation of grasses (Poaceae) in the communities, which developed on iron smelter affected lands in the Silesian Uplands. Fragm. Florist. Geobot. Pol. 20, 267–284 (2013).

  • 13.

    Kompała-Bąba, A. & Bąba, W. The spontaneous succession in a sand-pit—The role of life history traits and species habitat preferences. Polish J. Ecol. 61, 13–22 (2013).

    Google Scholar 

  • 14.

    Darbah, J. N. T. et al. Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): Reproductive fitness. Sci. World J. 7, 240–246 (2007).

    Article 

    Google Scholar 

  • 15.

    Alvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M. C. & Esquivias, M. P. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Ann. Bot. 106, 989–998 (2010).

  • 16.

    Zvereva, E. L., Roitto, M. & Kozlov, M. V. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environ. Rev. 18, 355–367 (2010).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Franiel, I. & Babczyńska, A. The growth and reproductive effort of Betula pendula Roth in a heavy-metals polluted area. Polish J. Environ. Stud. 20, 1097–1101 (2011).

    CAS 

    Google Scholar 

  • 18.

    Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. B Biol. Sci. 372, (2017).

  • 19.

    Obeso, J. R. Costs of reproduction in ilex aquifolium: Effects at tree, branch and leaf levels. J. Ecol. 85, 159–166 (1997).

    Article 

    Google Scholar 

  • 20.

    Obeso, J. R. The costs of reproduction in plants. New Phytol. 155, 321–348 (2002).

    Article 

    Google Scholar 

  • 21.

    Cipollini, M. L. & Stiles, E. W. Costs of reproduction in Nyssa sylvatica: Sexual dimorphism in reproductive frequency and nutrient flux. Oecologia 86, 585–593 (1991).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Seidling, W., Starfinger, U. & Stöcklin, J. Plant population ecology. Prog. Bot. 55, 345–370 (1994).

    Article 

    Google Scholar 

  • 23.

    Possen, B. J. H. M. et al. Variation in 13 leaf morphological and physiological traits within a silver birch ( Betula pendula ) stand and their relation to growth. Can. J. For. Res. 44, 657–665 (2014).

    Article 

    Google Scholar 

  • 24.

    Körner, C. Limitation and stress—Always or never?. J. Veg. Sci. 14, 141–143 (2003).

    Google Scholar 

  • 25.

    Giuliani, C., Lazzaro, L., Mariotti Lippi, M., Calamassi, R. & Foggi, B. Temperature-related effects on the germination capacity of black locust (Robinia pseudoacacia L., Fabaceae) seeds. Folia Geobot. 50, 275–282 (2015).

  • 26.

    Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature https://doi.org/10.1038/nature11014 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Koski, V. & Rousi, M. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. For. Int. J. For. Res. 78, 187–198 (2005).

    Google Scholar 

  • 28.

    Marguí, E., Queralt, I., Carvalho, M. L. & Hidalgo, M. Assessment of metal availability to vegetation (Betula pendula) in Pb–Zn ore concentrate residues with different features. Environ. Pollut. 145, 179–184 (2007).

    Article 

    Google Scholar 

  • 29.

    Hynynen, J. et al. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83, 103–119 (2010).

  • 30.

    Frouz, J. et al. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 84, 233–239 (2015).

    Article 

    Google Scholar 

  • 31.

    Řehounková, K., Lencová, K. & Prach, K. Spontaneous establishment of woodland during succession in a variety of central European disturbed sites. Ecol. Eng. 111, 94–99 (2018).

    Article 

    Google Scholar 

  • 32.

    Franiel, I. & Więski, K. Leaf features of silver birch (Betula pendula Roth). Variability within and between two populations (uncontaminated vs Pb-contaminated and Zn-contaminated site). Trees 19, 81–88 (2005).

  • 33.

    Kozlov, M. V. & Zvereva, E. L. Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Rev. Environ. Sci. Bio/Technol. 6, 231–259 (2007).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Zvereva, E. L. & Kozlov, M. V. Growth and reproduction of dwarf shrubs, Vaccinium myrtillus and V. vitis-idaea, in a severely polluted area. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2004.11.003 (2005).

  • 35.

    Kozlov, M. V. Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the copper–nickel smelter: Natural selection or phenotypic acclimation? Chemosphere 59, 189–197 (2005).

  • 36.

    Kondracki, J. Geografia fizyczna Polski. (Physical Geography of Poland). (PWN (in Polish), 2001).

  • 37.

    Pełka-Gościniak, J. Environmental aspects of relief transformation (Silesian Upland, Southern Poland). Environ. Socio-Econ. Stud. 2, 13–20.

  • 38.

    Tomusiak, R. et al. Age tables for silver birch (Betula pendula Roth) trees for early succession stands on abandoned agricultural lands. Sylwan 158, 579–589 (2014).

    Google Scholar 

  • 39.

    Szymkiewicz, B. Tablice Zasobności i Przyrostu Drzewostanów Ważniejszych Gatunków Drzew Leśnych. (Państwowe Wydawnictwo Rolnicze i Leśne, 2001).

  • 40.

    Dubois, H., Verkasalo, E. & Claessens, H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 11, 336 (2020).

  • 41.

    Ostrowska, A., Gawliński, S. & Szczubiałka, Z. Metody Analizy i Oceny Właściwości Gleb i Roślin. Katalog (Methods for Analysis and Assessment of Soil and Plant Properties) Catalog. (Instytut Ochrony Środowiska, 1991).

  • 42.

    Baskin, C. C. & Baskin, J. M. Seeds : Ecology, Biogeography, and Evolution of Dormancy and Germination. (Elsevier, 2014).

  • 43.

    Soltani, E., Ghaderi-Far, F., Baskin, C. C. & Baskin, J. M. Problems with using mean germination time to calculate rate of seed germination. Aust. J. Bot. 63, 631–635 (2015).

    Article 

    Google Scholar 

  • 44.

    Flores, P., Poggi, D., García, S. M., Catraro, M. & Gariglio, N. Effects of pre-stratification storage conditions on black walnut seed post-stratification germination capacity. Int. J. Fruit Sci. 17, 29–40 (2017).

    Article 

    Google Scholar 

  • 45.

    Ranal, M. A., de Santana, D. G., Ferreira, W. R. & Mendes-Rodrigues, C. Calculating germination measurements and organizing spreadsheets. Rev. Bras. Botân. 32, 849–855 (2009).

    Article 

    Google Scholar 

  • 46.

    Matthews, S. & Khajeh Hosseini, M. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Sci. Technol. 34, 339–347 (2006).

  • 47.

    Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. (Microcomputer Power, 2012).

  • 48.

    Inc., D. Dell Statistica (Data Analysis Software System, Version 13). (2016).

  • 49.

    Team, R. D. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2008).

  • 50.

    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419, 64–77 (2016).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Dahl, Å. E. & Fredrikson, M. The timetable for development of maternal tissues sets the stage for male genomic selection in Betula pendula (Betilaceae). Am. J. Bot. 83, 895–902 (1996).

    Article 

    Google Scholar 

  • 53.

    Kozlov, M. V. & Zvereva, E. L. Reproduction of mountain birch along a strong pollution gradient near Monchegorsk, Northwestern Russia. Environ. Pollut. 132, 443–451 (2004).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Sultan, S. E. Phenotypic plasticity in plants: A case study in ecological development. Evol. Dev. 5, 25–33 (2003).

    Article 

    Google Scholar 

  • 55.

    Zvereva, E. L. & Kozlov, M. V. Effects of pollution-induced habitat disturbance on the response of willows to simulated herbivory. J. Ecol. 89, 21–30 (2001).

    Article 

    Google Scholar 

  • 56.

    Eränen, J. K. Local adaptation of mountain birch to heavy metals in subarctic industrial barrens. For. Snow Landsc. Res. 80, 161–167 (2006).

    Google Scholar 

  • 57.

    Neuvonen, S., Nyyssonen, T., Ranta, H. & Kiilunen, S. Simulated acid rain and the reproduction of mountain birch [Betula pubescens ssp. tortuosa (Ledeb.) Nyman]: A cautionary tale. New Phytol. 118, 111–117 (1991).

  • 58.

    Cuinica, L. G., Abreu, I., Gomes, C. R. & Esteves da Silva, J. C. G. Exposure of Betula pendula Roth pollen to atmospheric pollutants CO, O3 and SO2. Grana 52, 299–304 (2013).

  • 59.

    Pasonen, H.-L., Pulkkinen, P. & Kärkkäinen, K. Genotype-environment interactions in pollen competitive ability in an anemophilous tree, Betula pendula Roth. Theor. Appl. Genet. 105, 465–473 (2002).

    Article 

    Google Scholar 

  • 60.

    Sarvas, R. On the flowering of birch and the quality of seed crop. Commun. Inst. For. Fenn. 1–38 (1952).

  • 61.

    Midmore, E., McCartan, S., Jinks, R. & Cahalan, C. Using thermal time models to predict germination of five provenances of silver birch (Betula pendula Roth) in southern England. Silva Fenn. 49, 1–12 (2015).

  • 62.

    Bojarczuk, K. et al. Effect of polluted soil and fertilisation on growth and physiology of Silver Birch (Betula pendula Roth.) seedlings. Polish J. Environ. Stud. 11, 483–492 (2002).

  • 63.

    Wierzbicka, M. & Rostański, A. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: A review. Acta Bot. Cracoviensia 44, 7–10 (2002).

    Google Scholar 

  • 64.

    Mahdi, T. & Whittaker, J. B. Do birch trees (Betula pendula) grow better if foraged by wood ants?. J. Anim. Ecol. 62, 101–116 (1993).

    Article 

    Google Scholar 

  • 65.

    Barantal, S. et al. Contrasting effects of tree species and genetic diversity on the leaf—Miner communities associated with silver birch. Oecologia 189, 687–697 (2019).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Santamour, Frank, S. & Greene, A. European hornet damage to ash and birch trees. J. Arboric. 12, 273–279 (1986).

  • 67.

    Klingeman, B., Oliver, J. & F., H. Who’s doin’ all that chewin’? The European hornet. Tenn. Green Times 2, 34–36 (2001).

  • 68.

    Ylioja, T., Roininen, H., Heinonen, J. & Rousi, M. Susceptibility of Betula pendula clones to Phytobia betulae, a dipteran miner of birch stems. Can. J. For. Res. 30, 1824–1829 (2000).

    Article 

    Google Scholar 

  • 69.

    Franiel, I. Development of Betula pendula seedlings growing on the Silesia Steelworks dumping grounds in Katowice. Acta Agrophys. 51, 51–55 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Beating in on a stable partnership

    Tiny particles power chemical reactions