Stearns, S.C. The Evolution of Life Histories. https://doi.org/10.1046/j.1420-9101.1993.6020304.x (Oxford University Press/Wiley, 1992).
Dingle, H. The evolution of life histories. in Population Biology (Wöhrmann K., Jain S.K. eds.). https://doi.org/10.1007/978-3-642-74474-7_9 (Springer, 1990).
Yang, L., Walck, J. L. & El-Kassaby, Yousry, A. Roles of the environment in plant life-history tradeoffs. in Advances in Seed Biology (Jimenez-Lopez, J.C. ed.) 674. https://doi.org/10.5772/intechopen.70312.
Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond.. Ser. B Biol. Sci. 351, 1291–1298 (1996).
Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: Implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2006).
Google Scholar
Prozherina, N., Freiwald, V., Rousi, M. & Oksanen, E. Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula). New Phytol. 159, 623–636 (2003).
Google Scholar
Zvereva, Elena, L., Roitto, M. & Kozlov, M. V. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environ. Rev. 18, 355–367 (2010).
Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 260, 1623–1639 (2010).
Google Scholar
Possen, B. J. H. M. et al. Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. For. Ecol. Manag. 262, 1387–1399 (2011).
Řehounková, K. & Prach, K. Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel–sand pits. Basic Appl. Ecol. 11, 45–53 (2010).
Google Scholar
Franiel, I. The Biology and Ecology of Betula pendula Roth on Post-Industrial Waste Dumping Grounds: The Variability Range of Life History Traits (Silesia University, 2012).
Kompała-Ba̧ba, A. & Ba̧ba, W. Participation of grasses (Poaceae) in the communities, which developed on iron smelter affected lands in the Silesian Uplands. Fragm. Florist. Geobot. Pol. 20, 267–284 (2013).
Kompała-Bąba, A. & Bąba, W. The spontaneous succession in a sand-pit—The role of life history traits and species habitat preferences. Polish J. Ecol. 61, 13–22 (2013).
Darbah, J. N. T. et al. Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): Reproductive fitness. Sci. World J. 7, 240–246 (2007).
Google Scholar
Alvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M. C. & Esquivias, M. P. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Ann. Bot. 106, 989–998 (2010).
Zvereva, E. L., Roitto, M. & Kozlov, M. V. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environ. Rev. 18, 355–367 (2010).
Google Scholar
Franiel, I. & Babczyńska, A. The growth and reproductive effort of Betula pendula Roth in a heavy-metals polluted area. Polish J. Environ. Stud. 20, 1097–1101 (2011).
Google Scholar
Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. B Biol. Sci. 372, (2017).
Obeso, J. R. Costs of reproduction in ilex aquifolium: Effects at tree, branch and leaf levels. J. Ecol. 85, 159–166 (1997).
Google Scholar
Obeso, J. R. The costs of reproduction in plants. New Phytol. 155, 321–348 (2002).
Google Scholar
Cipollini, M. L. & Stiles, E. W. Costs of reproduction in Nyssa sylvatica: Sexual dimorphism in reproductive frequency and nutrient flux. Oecologia 86, 585–593 (1991).
Google Scholar
Seidling, W., Starfinger, U. & Stöcklin, J. Plant population ecology. Prog. Bot. 55, 345–370 (1994).
Google Scholar
Possen, B. J. H. M. et al. Variation in 13 leaf morphological and physiological traits within a silver birch ( Betula pendula ) stand and their relation to growth. Can. J. For. Res. 44, 657–665 (2014).
Google Scholar
Körner, C. Limitation and stress—Always or never?. J. Veg. Sci. 14, 141–143 (2003).
Giuliani, C., Lazzaro, L., Mariotti Lippi, M., Calamassi, R. & Foggi, B. Temperature-related effects on the germination capacity of black locust (Robinia pseudoacacia L., Fabaceae) seeds. Folia Geobot. 50, 275–282 (2015).
Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature https://doi.org/10.1038/nature11014 (2012).
Google Scholar
Koski, V. & Rousi, M. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. For. Int. J. For. Res. 78, 187–198 (2005).
Marguí, E., Queralt, I., Carvalho, M. L. & Hidalgo, M. Assessment of metal availability to vegetation (Betula pendula) in Pb–Zn ore concentrate residues with different features. Environ. Pollut. 145, 179–184 (2007).
Google Scholar
Hynynen, J. et al. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83, 103–119 (2010).
Frouz, J. et al. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 84, 233–239 (2015).
Google Scholar
Řehounková, K., Lencová, K. & Prach, K. Spontaneous establishment of woodland during succession in a variety of central European disturbed sites. Ecol. Eng. 111, 94–99 (2018).
Google Scholar
Franiel, I. & Więski, K. Leaf features of silver birch (Betula pendula Roth). Variability within and between two populations (uncontaminated vs Pb-contaminated and Zn-contaminated site). Trees 19, 81–88 (2005).
Kozlov, M. V. & Zvereva, E. L. Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Rev. Environ. Sci. Bio/Technol. 6, 231–259 (2007).
Google Scholar
Zvereva, E. L. & Kozlov, M. V. Growth and reproduction of dwarf shrubs, Vaccinium myrtillus and V. vitis-idaea, in a severely polluted area. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2004.11.003 (2005).
Kozlov, M. V. Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the copper–nickel smelter: Natural selection or phenotypic acclimation? Chemosphere 59, 189–197 (2005).
Kondracki, J. Geografia fizyczna Polski. (Physical Geography of Poland). (PWN (in Polish), 2001).
Pełka-Gościniak, J. Environmental aspects of relief transformation (Silesian Upland, Southern Poland). Environ. Socio-Econ. Stud. 2, 13–20.
Tomusiak, R. et al. Age tables for silver birch (Betula pendula Roth) trees for early succession stands on abandoned agricultural lands. Sylwan 158, 579–589 (2014).
Szymkiewicz, B. Tablice Zasobności i Przyrostu Drzewostanów Ważniejszych Gatunków Drzew Leśnych. (Państwowe Wydawnictwo Rolnicze i Leśne, 2001).
Dubois, H., Verkasalo, E. & Claessens, H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 11, 336 (2020).
Ostrowska, A., Gawliński, S. & Szczubiałka, Z. Metody Analizy i Oceny Właściwości Gleb i Roślin. Katalog (Methods for Analysis and Assessment of Soil and Plant Properties) Catalog. (Instytut Ochrony Środowiska, 1991).
Baskin, C. C. & Baskin, J. M. Seeds : Ecology, Biogeography, and Evolution of Dormancy and Germination. (Elsevier, 2014).
Soltani, E., Ghaderi-Far, F., Baskin, C. C. & Baskin, J. M. Problems with using mean germination time to calculate rate of seed germination. Aust. J. Bot. 63, 631–635 (2015).
Google Scholar
Flores, P., Poggi, D., García, S. M., Catraro, M. & Gariglio, N. Effects of pre-stratification storage conditions on black walnut seed post-stratification germination capacity. Int. J. Fruit Sci. 17, 29–40 (2017).
Google Scholar
Ranal, M. A., de Santana, D. G., Ferreira, W. R. & Mendes-Rodrigues, C. Calculating germination measurements and organizing spreadsheets. Rev. Bras. Botân. 32, 849–855 (2009).
Google Scholar
Matthews, S. & Khajeh Hosseini, M. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Sci. Technol. 34, 339–347 (2006).
Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. (Microcomputer Power, 2012).
Inc., D. Dell Statistica (Data Analysis Software System, Version 13). (2016).
Team, R. D. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2008).
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
Google Scholar
Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419, 64–77 (2016).
Google Scholar
Dahl, Å. E. & Fredrikson, M. The timetable for development of maternal tissues sets the stage for male genomic selection in Betula pendula (Betilaceae). Am. J. Bot. 83, 895–902 (1996).
Google Scholar
Kozlov, M. V. & Zvereva, E. L. Reproduction of mountain birch along a strong pollution gradient near Monchegorsk, Northwestern Russia. Environ. Pollut. 132, 443–451 (2004).
Google Scholar
Sultan, S. E. Phenotypic plasticity in plants: A case study in ecological development. Evol. Dev. 5, 25–33 (2003).
Google Scholar
Zvereva, E. L. & Kozlov, M. V. Effects of pollution-induced habitat disturbance on the response of willows to simulated herbivory. J. Ecol. 89, 21–30 (2001).
Google Scholar
Eränen, J. K. Local adaptation of mountain birch to heavy metals in subarctic industrial barrens. For. Snow Landsc. Res. 80, 161–167 (2006).
Neuvonen, S., Nyyssonen, T., Ranta, H. & Kiilunen, S. Simulated acid rain and the reproduction of mountain birch [Betula pubescens ssp. tortuosa (Ledeb.) Nyman]: A cautionary tale. New Phytol. 118, 111–117 (1991).
Cuinica, L. G., Abreu, I., Gomes, C. R. & Esteves da Silva, J. C. G. Exposure of Betula pendula Roth pollen to atmospheric pollutants CO, O3 and SO2. Grana 52, 299–304 (2013).
Pasonen, H.-L., Pulkkinen, P. & Kärkkäinen, K. Genotype-environment interactions in pollen competitive ability in an anemophilous tree, Betula pendula Roth. Theor. Appl. Genet. 105, 465–473 (2002).
Google Scholar
Sarvas, R. On the flowering of birch and the quality of seed crop. Commun. Inst. For. Fenn. 1–38 (1952).
Midmore, E., McCartan, S., Jinks, R. & Cahalan, C. Using thermal time models to predict germination of five provenances of silver birch (Betula pendula Roth) in southern England. Silva Fenn. 49, 1–12 (2015).
Bojarczuk, K. et al. Effect of polluted soil and fertilisation on growth and physiology of Silver Birch (Betula pendula Roth.) seedlings. Polish J. Environ. Stud. 11, 483–492 (2002).
Wierzbicka, M. & Rostański, A. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: A review. Acta Bot. Cracoviensia 44, 7–10 (2002).
Mahdi, T. & Whittaker, J. B. Do birch trees (Betula pendula) grow better if foraged by wood ants?. J. Anim. Ecol. 62, 101–116 (1993).
Google Scholar
Barantal, S. et al. Contrasting effects of tree species and genetic diversity on the leaf—Miner communities associated with silver birch. Oecologia 189, 687–697 (2019).
Google Scholar
Santamour, Frank, S. & Greene, A. European hornet damage to ash and birch trees. J. Arboric. 12, 273–279 (1986).
Klingeman, B., Oliver, J. & F., H. Who’s doin’ all that chewin’? The European hornet. Tenn. Green Times 2, 34–36 (2001).
Ylioja, T., Roininen, H., Heinonen, J. & Rousi, M. Susceptibility of Betula pendula clones to Phytobia betulae, a dipteran miner of birch stems. Can. J. For. Res. 30, 1824–1829 (2000).
Google Scholar
Franiel, I. Development of Betula pendula seedlings growing on the Silesia Steelworks dumping grounds in Katowice. Acta Agrophys. 51, 51–55 (2001).
Source: Ecology - nature.com