in

Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity

  • 1.

    Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Ballou, J. D. et al. Demographic and genetic management of captive populations. in Wild Mammals in Captivity: Principles and Techniques for Zoo Management (eds. Kleiman, D. G., Thompson, K. V. & Kirk Baer, C.) 219–252 (The University of Chicago Press, 2010).

  • 3.

    Ralls, K. & Ballou, J. D. Captive breeding and reintroduction. in Encyclopedia of Biodiversity (ed. Levin, S. A.) 662–667 (Elsevier Academic Press, 2013). https://doi.org/10.1016/B978-0-12-384719-5.00268-9.

  • 4.

    IUCN. Guidelines on the Use of Ex Situ Management for Species Conservation (2nd ed.). www.iucn.org/about/work/programmes/species/publications/iucn_guidelines_and__policy__statements/ (2014).

  • 5.

    Lacy, R. C. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).

    Article 

    Google Scholar 

  • 6.

    Lockyear, K. M., MacDonald, S. E., Waddell, W. T. & Goodrowe, K. L. Investigation of captive red wolf ejaculate characteristics in relation to age and inbreeding. Theriogenology 86, 1369–1375 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 17, 325–333 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).

    Article 

    Google Scholar 

  • 9.

    Robert, A., Couvet, D. & Sarrazin, F. Integration of demography and genetics in population restorations. Écoscience 14, 463–471 (2007).

    Article 

    Google Scholar 

  • 10.

    Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).

    Article 

    Google Scholar 

  • 11.

    McPhee, M. E. & McPhee, N. F. Relaxed selection and environmental change decrease reintroduction success in simulated populations: altered selection in captive populations. Anim. Conserv. 15, 274–282 (2012).

    Article 

    Google Scholar 

  • 12.

    Ford, M. J. Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv. Biol. 16, 815–825 (2002).

    Article 

    Google Scholar 

  • 13.

    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    Article 

    Google Scholar 

  • 14.

    Robert, A. Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915–2922 (2009).

    Article 

    Google Scholar 

  • 15.

    Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. 109, 238–242 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).

    Article 

    Google Scholar 

  • 18.

    Gordon, S. P., Hendry, A. P. & Reznick, D. N. Predator-induced contemporary evolution, phenotypic plasticity, and the evolution of reaction norms in guppies. Copeia 105, 514–522 (2017).

    Article 

    Google Scholar 

  • 19.

    Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Smith, J. M. Review lectures on senescence—I. The causes of ageing. Proc. R. Soc. Lond. B Biol. Sci. 157, 115–127 (1962).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Partridge, L. & Barton, N. H. Optimally, mutation and the evolution of ageing. Nature 362, 305–311 (1993).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J. & Thünken, T. Effects of ageing and inbreeding on the reproductive traits in a cichlid fish I: the male perspective. Biol. J. Linn. Soc. 120, 752–761 (2017).

    Article 

    Google Scholar 

  • 24.

    Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301 (1977).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    de Boer, R. A., Eens, M. & Müller, W. Sex-specific effects of inbreeding on reproductive senescence. Proc. R. Soc. B Biol. Sci. 285, 20180231 (2018).

    Article 

    Google Scholar 

  • 27.

    Promislow, D. E. L. & Tatar, M. Mutation and senescence: where genetics and demography meet. Genetica 102, 299–314 (1998).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl. Acad. Sci. 93, 6140–6145 (1996).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Snoke, M. S. & Promislow, D. E. L. Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity 91, 546–556 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Robert, A., Toupance, B., Tremblay, M. & Heyer, E. Impact of inbreeding on fertility in a pre-industrial population. Eur. J. Hum. Genet. 17, 673–681 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Lesobre, L. et al. Conservation genetics of Houbara Bustard (Chlamydotis undulata undulata): population structure and its implications for the reinforcement of wild populations. Conserv. Genet. 11, 1489–1497 (2010).

    Article 

    Google Scholar 

  • 32.

    Rabier, R., Robert, A., Lacroix, F. & Lesobre, L. Genetic assessment of a conservation breeding program of the houbara bustard (Chlamydotis undulata undulata) in Morocco, based on pedigree and molecular analyses. Zoo Biol. 39, 365–447 (2020).

    Article 

    Google Scholar 

  • 33.

    Hardouin, L. A., Legagneux, P., Hingrat, Y. & Robert, A. Sex-specific dispersal responses to inbreeding and kinship. Anim. Behav. https://doi.org/10.1016/j.anbehav.2015.04.002 (2015).

    Article 

    Google Scholar 

  • 34.

    Cornec, C., Robert, A., Rybak, F. & Hingrat, Y. Male vocalizations convey information on kinship and inbreeding in a lekking bird. Ecol. Evol. 9, 4421–4430 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Vuarin, P. et al. No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Mol. Ecol. 27, 5252–5262 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Bacon, L., Hingrat, Y. & Robert, A. Evidence of reproductive senescence of released individuals in a reinforced bird population. Biol. Conserv. 215, 288–295 (2017).

    Article 

    Google Scholar 

  • 37.

    Chantepie, S. et al. Quantitative genetics of the aging of reproductive traits in the houbara bustard. PLoS ONE 10, e0133140 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. Sexually extravagant males age more rapidly. Ecol. Lett. 14, 1017–1024 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. The sperm of aging male bustards retards their offspring’s development. Nat. Commun. 6, 1–9 (2015).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Vuarin, P. et al. Post-copulatory sexual selection allows females to alleviate the fitness costs incurred when mating with senescing males. Proc. R. Soc. B Biol. Sci. 286, 20191675 (2019).

    Article 

    Google Scholar 

  • 41.

    Chargé, R. et al. Quantitative genetics of sexual display, ejaculate quality and size in a lekking species. J. Anim. Ecol. 82, 399–407 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Chargé, R. et al. Does recognized genetic management in supportive breeding prevent genetic changes in life-history traits?. Evol. Appl. 7, 521–532 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Gaucher, P. et al. Taxonomy of the Houbara Bustard Chlamydotis undulata subspecies considered on the basis of sexual display and genetic divergence. Ibis 138, 273–282 (1996).

    Article 

    Google Scholar 

  • 44.

    Hingrat, Y., Saint Jalme, M., Chalah, T., Orhant, N. & Lacroix, F. Environmental and social constraints on breeding site selection. Does the exploded-lek and hotspot model apply to the Houbara bustard Chlamydotis undulata undulata?. J. Avian Biol. 39, 393–404 (2008).

    Article 

    Google Scholar 

  • 45.

    Duursma, D. E., Gallagher, R. V., Price, J. J. & Griffith, S. C. Variation in avian egg shape and nest structure is explained by climatic conditions. Sci. Rep. 8, 1–10 (2018).

    Google Scholar 

  • 46.

    Cucco, M., Grenna, M. & Malacarne, G. Female condition, egg shape and hatchability: a study on the grey partridge. J. Zool. 287, 186–194 (2012).

    Article 

    Google Scholar 

  • 47.

    Adamou, A.-E. et al. Egg size and shape variation in Rufous Bush Chats Cercotrichas galactotes breeding in date palm plantations: hatching success increases with egg elongation. Avian Biol. Res. 11, 100–107 (2018).

    Article 

    Google Scholar 

  • 48.

    Goriup, P. D. The world status of the Houbara Bustard Chlamydotis undulata. Bird Conserv. Int. 7, 373–397 (1997).

    Article 

    Google Scholar 

  • 49.

    BirdLife International. Chlamydotis undulata. The IUCN Red List of Threatened Species 2016: e.T22728245A90341807. (2016) https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22728245A90341807.en.

  • 50.

    Lacroix, F., Seabury, J., Al Bowardi, M. & Renaud, J. The Emirates Center for Wildlife Propagation: developing a comprehensive strategy to secure a self-sustaining population of houbara bustard (Chlamydotis undulata undulata) in Eastern Morocco. Houbara News 5, (2003).

  • 51.

    Conway, W. Wild and zoo animal interactive management and habitat conservation. Biodivers. Conserv. 4, 573–594 (1995).

    Article 

    Google Scholar 

  • 52.

    Saint Jalme, M., Gaucher, P. & Paillat, P. Artificial insemination in Houbara bustards (Chlamydotis undulata): influence of the number of spermatozoa and insemination frequency on fertility and ability to hatch. Reproduction 100, 93–103 (1994).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Allendorf, F. W. Delay of adaptation to captive breeding by equalizing family size. Conserv. Biol. 7, 416–419 (1993).

    Article 

    Google Scholar 

  • 54.

    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 18, e3000410 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Vuarin, P. et al. Sperm competition accentuates selection on ejaculate attributes. Biol. Lett. 15, 20180889 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Chalah, T., Seigneurin, F., Blesbois, E. & Brillard, J. P. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39, 185–191 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Hoyt, D. F. Practical methods of estimating volume and fresh weight of bird eggs. Auk 96, 73–77 (1979).

    Google Scholar 

  • 58.

    Wellmann, R. optiSel: Optimum Contribution Selection and Population Genetics. R package version 2.0.2. https://CRAN.R-project.org/package=optiSel (2018).

  • 59.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2019).

  • 60.

    Princée, F. P. G. Exploring Studbooks for Wildlife Management and Conservation (Springer, Berlin, 2016).

    Google Scholar 

  • 61.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 62.

    Ludecke, D., Makowski, D. & Waggoner, P. performance: Assessment of Regression Models Performance. R package version 0.3.0. https://CRAN.R-project.org/package=performance (2019).

  • 63.

    Ludecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772. https://doi.org/10.21105/joss.00772 (2018).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Wickham, H. ggplot2: elegant graphics for data analysis (Springer, Berlin, 2009).

    Google Scholar 

  • 65.

    Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008 (1997).

    Article 

    Google Scholar 

  • 66.

    Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc. R. Soc. B Biol. Sci. 276, 2769–2777 (2009).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Angelier, F., Shaffer, S. A., Weimerskirch, H. & Chastel, O. Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long-lived seabird: the wandering albatross. Gen. Comp. Endocrinol. 149, 1–9 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Angelier, F., Weimerskirch, H., Dano, S. & Chastel, O. Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behav. Ecol. Sociobiol. 61, 611–621 (2007).

    Article 

    Google Scholar 

  • 69.

    Ottinger, M. A. et al. The Japanese quail: a model for studying reproductive aging of hypothalamic systems. Exp. Gerontol. 39, 1679–1693 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Lecomte, V. J. et al. Patterns of aging in the long-lived wandering albatross. Proc. Natl. Acad. Sci. 107, 6370–6375 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Opatová, P. et al. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 6, 295–304 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Croquet, C. et al. Linear and curvilinear effects of inbreeding on production traits for Walloon Holstein cows. J. Dairy Sci. 90, 465–471 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Leroy, G. Inbreeding depression in livestock species: review and meta-analysis. Anim. Genet. 45, 618–628 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations: genetic management. Conserv. Lett. 11, e12412 (2018).

    Article 

    Google Scholar 

  • 75.

    Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. 113, 3585–3590 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Frankham, R. & Ralls, K. Inbreeding leads to extinction. Nature 392, 441–442 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 77.

    Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity 95, 235–242 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Robert, A. Negative environmental perturbations may improve species persistence. Proc. R. Soc. B Biol. Sci. 273, 2501–2506 (2006).

    Article 

    Google Scholar 

  • 79.

    Crnokrak, P. & Roff, D. A. Inbreeding depression in the wild. Heredity 83, 260–270 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Lynch, M. & O’Hely, M. Captive breeding and genetic fitness of natural populations. Conserv. Genet. 2, 363–378 (2001).

    Article 

    Google Scholar 

  • 82.

    Robert, A., Sarrazin, F., Couvet, D. & Legendre, S. Releasing adults versus young in reintroductions: interactions between demography and genetics. Conserv. Biol. 18, 1078–1087 (2004).

    Article 

    Google Scholar 

  • 83.

    Roche, E. A., Cuthbert, F. J. & Arnold, T. W. Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population?. Biol. Conserv. 141, 3079–3088 (2008).

    Article 

    Google Scholar 

  • 84.

    Ford, N. B. & Seigel, R. A. Phenotypic plasticity in reproductive traits: evidence from a viviparous snake. Ecology 70, 1768–1774 (1989).

    Article 

    Google Scholar 

  • 85.

    Bacon, L. Etude des paramètres de reproduction et de la dynamique d’une population renforcée d’outardes Houbara nord-africaines (Chlamydotis undulata undulata) au Maroc. (Museum National d’Histoire Naturelle, 2017).

  • 86.

    Robert, A. et al. Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim. Conserv. 18, 397–406 (2015).

    Article 

    Google Scholar 

  • 87.

    Bacon, L., Robert, A. & Hingrat, Y. Long lasting breeding performance differences between wild-born and released females in a reinforced North African Houbara bustard (Chlamydotis undulata undulata) population: a matter of release strategy. Biodivers. Conserv. 28, 553–570 (2019).

    Article 

    Google Scholar 

  • 88.

    Vuarin, P. et al. Paternal age negatively affects sperm production of the progeny. Ecol. Lett. https://doi.org/10.1111/ele.13696 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Keller, L. F., Reid, J. M. & Arcese, P. Testing evolutionary models of senescence in a natural population: age and inbreeding effects on fitness components in song sparrows. Proc. R. Soc. B Biol. Sci. 275, 597–604 (2008).

    CAS 
    Article 

    Google Scholar 

  • 90.

    Reynolds, R. M. et al. Age specificity of inbreeding load in Drosophila melanogaster and implications for the evolution of late-life mortality plateaus. Genetics 177, 587–595 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Tan, C. K. W., Pizzari, T. & Wigby, S. Parental age, gametic age, and inbreeding interact to modulate offspring viability in Drosophila melanogaster. Evolution 67, 3043–3051 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Deubel, W., Bassukas, I. D., Schlereth, W., Lorenz, R. & Hempel, K. Age dependent selection against HPRT deficient T lymphocytes in the HPRT± heterozygous mouse. Mutat. Res. Mol. Mech. Mutagen. 351, 67–77 (1996).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Réale, D. & Festa-Bianchet, M. Predator-induced natural selection on temperament in bighorn ewes. Anim. Behav. 65, 463–470 (2003).

    Article 

    Google Scholar 

  • 94.

    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against Inbred Soay Sheep in a free-living, island population. Evolution 53, 1259 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet. Res. 74, 165–178 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    What manta rays remember: the best spots to get spruced up

    Nitrogen isotope effects can be used to diagnose N transformations in wastewater anammox systems