Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).
Google Scholar
Page, P. et al. Social apoptosis in honey bee superorganisms. Sci. Rep. 6, 1–6 (2016).
Google Scholar
Winston, M. L. The Biology of the Honey Bee. (Harvard University Press, 1991).
Beye, M. et al. Exceptionally high levels of recombination across the honey bee genome. Genome Res. 16, 1339–1344 (2006).
Google Scholar
Kent, C. F., Minaei, S., Harpur, B. A. & Zayed, A. Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc. Natl. Acad. Sci. 109, 18012–18017 (2012).
Google Scholar
Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).
Google Scholar
Traynor, K. S. et al. Varroa destructor: a complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 36, 592–606 (2020).
Google Scholar
Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).
Google Scholar
Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.). PLoS ONE 9, (2014).
Camazine, S. Differential Reproduction of the Mite, Varroa jacobsoni (Mesostigmata: Varroidae), on Africanized and European Honey Bees (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 79, 801–803 (1986).
Google Scholar
Corrêa-Marques, M.-H. & De Jong, D. Uncapping of worker bee brood, a component of the hygienic behavior of Africanized honey bees against the mite Varroa jacobsoni Oudemans. Apidologie 29, 283–289 (1998).
Google Scholar
Allsopp, M. H. Analysis of Varroa destructor infestation of southern African honeybee populations. (University of Pretoria, 2007).
Locke, B., Le Conte, Y., Crauser, D. & Fries, I. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecol. Evol. 2, 1144–1150 (2012).
Google Scholar
Oddie, M. A. Y., Dahle, B. & Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 5, e3956 (2017).
Google Scholar
Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47, 467–482 (2016).
Google Scholar
Villegas, A. J. & Villa, J. D. Uncapping of pupal cells by European bees in the United States as responses to Varroa destructor and Galleria mellonella. J. Apic. Res. 45, 203–206 (2006).
Google Scholar
Spivak, M. & Gilliam, M. Facultative expression of hygienic behaviour of honey bees in relation to disease resistance. J. Apic. Res. 32, 147–157 (1993).
Google Scholar
Le Conte, Y., Arnold, G. & Desenfant, P. Influence of brood temperature and hygrometry variations on the development of the honey bee Ectoparasite Varroa jacobsoni (Mesostigmata: Varroidae). Environ. Entomol. 19, 1780–1785 (1990).
Google Scholar
Kraus, B. & Velthuis, H. H. W. High humidity in the honey bee (Apis mellifera L.) Brood nest limits reproduction of the parasitic mite varroa jacobsoni oud. Naturwissenschaften 84, 217–218 (1997).
Google Scholar
Harris, J. W., Danka, R. G. & Villa, J. D. Changes in infestation, cell cap condition, and reproductive status of varroa destructor (Mesostigmata: Varroidae) in brood exposed to honey bees with varroa sensitive hygiene. Ann. Entomol. Soc. Am. 105, 512–518 (2012).
Google Scholar
Oddie, M. A. Y. et al. Rapid parallel evolution overcomes global honey bee parasite. Sci. Rep. 8, 1–9 (2018).
Google Scholar
Martin, S. J. et al. Varroa destructor reproduction and cell re-capping in mite-resistant Apis mellifera populations. Apidologie 51, 369–381 (2020).
Google Scholar
Martin, S. J. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L under natural conditions. Exp. Appl. Acarol. 18, 87–100 (1994).
Google Scholar
Donzé, G., Herrmann, M., Bachofen, B. & Guerin, P. R. M. Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecol. Entomol. 21, 17–26 (1996).
Google Scholar
Harris, J. W., Danka, R. G. & Villa, J. D. Honey bees (Hymenoptera: Apidae) with the Trait of varroa sensitive hygiene remove brood with all reproductive stages of varroa mites (Mesostigmata: Varroidae). Ann. Entomol. Soc. Am. 103, 146–152 (2010).
Google Scholar
Harris, J. W. & Harbo, J. R. Low sperm counts and reduced fecundity of mites in colonies of honey bees (Hymenoptera: Apidae) resistant to varroa jacobsoni (mesostigmata: Varroidae). J. Econ. Entomol. 92, 83–90 (1999).
Google Scholar
Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14, (2019).
Arathi, H. S., Ho, G. & Spivak, M. Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L, and implications for disease transmission. Anim. Behav. 72, 431–438 (2006).
Google Scholar
Kirrane, M. J. et al. Asynchronous Development of Honey Bee Host and Varroa destructor (Mesostigmata: Varroidae) Influences Reproductive Potential of Mites. J. Econ. Entomol. 104, 1146–1152 (2011).
Google Scholar
Locke, B. & Fries, I. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42, 533–542 (2011).
Google Scholar
Chantawannakul, P., Ramsey, S., vanEngelsdorp, D., Khongphinitbunjong, K. & Phokasem, P. Tropilaelaps mite: an emerging threat to European honey bee. Curr. Opin. Insect Sci. 26, 69–75 (2018).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
R Core team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019), https://www.R-project.org.
Source: Ecology - nature.com