Macrae, T. C. et al. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. J. Econ. Entomol. 98, 577–587 (2005).
Google Scholar
Miklos, J. A. et al. Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests. Crop Sci. 47, 148–157 (2007).
Google Scholar
Spark. BIP soja 2021. Spark Smarter Decisions, Valinhos, SP. http://spark-ie.com.br (2021).
Bernardi, O. et al. Assessment of the high dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 68, 1083–1091 (2012).
Google Scholar
Bernardi, O. et al. High levels of biological activity of Cry1Ac protein expressed on MON 87701 × MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Manag. Sci. 70, 588–594 (2014).
Google Scholar
Dourado, P. M. et al. High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS ONE 11, e0161388 (2016).
Google Scholar
Horikoshi, R. J. et al. Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Sci. Rep. 11, 15956 (2021).
Google Scholar
Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).
Google Scholar
Tabashnik, B. E., Van Rensburg, J. B. J. & Carrière, Y. Field-evolved insect resistance to Bt crops: Definition, theory and data. J. Econ. Entomol. 102, 2011–2025 (2009).
Google Scholar
Yano, S. A. et al. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag. Sci. 72, 1578–1584 (2015).
Google Scholar
Tabashnik, B. E. & Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 35, 926–935 (2017).
Google Scholar
CTNBio– Comissão Técnica Nacional de Biossegurança. Technical Opinion No. 2542/2010-Commercial release of genetically modified insect-resistant and herbicide-tolerant soy containing genetically modified events MON 87701 and MON 89788. http://ctnbio.mctic.gov.br/en/liberacao-comercial#/liberacao-comercial/consultar-processo (2010).
Van Rensburg, J. B. J. First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil 24, 147–151 (2007).
Google Scholar
Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).
Google Scholar
Dhurua, S. & Gujar, G. T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67, 898–903 (2011).
Google Scholar
Gassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S. & Dunbar, M. W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).
Google Scholar
Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).
Google Scholar
Bernardi, D. et al. Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS ONE 10, e0140130 (2015).
Google Scholar
Mohan, K. S., Ravi, K. C., Suresh, P. J., Sumerford, D. & Head, G. P. Field resistance to the Bacillus thuringiensis protein Cry1Ac expressed in Bollgard hybrid cotton in pink bollworm, Pectinophora gossypiella (Saunders), populations in India. Pest Manag. Sci. 72, 738–746 (2016).
Google Scholar
Omoto, C. O. et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 72, 1727–1736 (2016).
Google Scholar
Naik, V. C., Kumbhare, S., Kranthi, S., Satija, U. & Kranthi, K. R. Field-evolved resistance of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), to transgenic Bacillus thuringiensis (Bt) cotton expressing crystal 1Ac (Cry1Ac) and Cry2Ab in India. Pest Manag. Sci. 74, 2544–2554 (2018).
Google Scholar
Sanchez, N. E. & Pereyra, P. C. Life tables of the soybean looper Rachiplusia nu (Lepidoptera: Noctuidae) in the laboratory. Rev. Soc. Entomol. Arg. 54, 89–96 (1995).
Sánchez, N. E., Pereyra, P. C. & Gentile, M. V. Population parameters of Epinotia aporema (Lepidoptera: Tortricidae) on soybean. Rev. Soc. Entomol. Arg. 56, 151–153 (1997).
Barrionuevo, M. J., Murúa, M. G., Goane, L., Meagher, R. & Navarro, F. Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Fla. Entomol. 95, 944–951 (2012).
Google Scholar
Ferreira, B. S. C. Sampling Epinotia aporema on Soybean in Sampling Methods in Soybean Entomology (eds. Kogan, M. & Herzog, D. C) 374–381 (Springer 1980).
Specht, A. et al. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 19, 1–8 (2019).
Google Scholar
Santos, S. R. D., Specht, A., Carneiro, E. & Casagrande, M. M. The influence of agricultural occupation and climate on the spatial distribution of Plusiinae (Lepidoptera: Noctuidae) on a latitudinal gradient in Brazil. Rev. Bras. Entomol. 65, e20200103 (2021).
Google Scholar
Greene, G. L., Leppla, N. C. & Dickerson, W. A. Velvetbean caterpillar: A rearing procedure and artificial medium. J. Econ. Entomol. 69, 487–488 (1976).
Google Scholar
Andow, D. A. & Alstad, D. N. F2 screen for rare resistance alleles. J. Econ. Entomol. 91, 572–578 (1998).
Google Scholar
Andow, D. A. & Alstad, D. N. Credibility interval for rare resistance allele frequencies. J. Econ. Entomol. 92, 755–758 (1999).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.
Herzog, D. C. Sampling soybean looper on soybean. In Sampling Methods in Soybean Entomology (eds. Koogan, M. & Herzog, D. C.) 141–168 (Springer, 1980).
Navarrro, F. R., Saini, E. D. & Leiva, P. D. Clave pictórica de polillas de interés agrícola. INTA, EEA PERGAMINO, Pergamino, Buenos Aires, Argentina (2009).
Gilligan, T. M. & Passoa, S. C. LepIntercept–An identification resource for intercepted Lepidoptera larvae. (Identification Technology Program (ITP), 2014). http://idtools.org/id/leps/lepintercept/key.html (2014).
Chen, D. et al. Bacillus thuringiensis chimeric proteins Cry1A. 2 and Cry1B. 2 to control soybean lepidopteran pests: New domain combinations enhance insecticidal spectrum of activity and novel receptor contributions. PLoS ONE 16, e0249150 (2021).
Google Scholar
SAS Institute Inc., SAS/STAT: 9.1. Statistical Analysis System: getting started with the SAS learning. SAS Institute, Cary, NC (2002).
Farias, J. R. B., Nepomuceno, A. L., Neumaier, N. Ecofisiologia da soja. Londrina: Embrapa-Centro Nacional de Pesquisa de Soja, Circular Técnica, 48 (2007).
Sosa-Gómez, D. R. et al. Manual de Identificação de Insetos e Outros Invertebrados da Cultura da Soja. (Embrapa Soja-Documentos (INFOTECA-E), 2014).
Kaster, M. & Farias, J. R. B. Regionalização dos Testes de Valor de Cultivo e Uso e da indicação de Cultivares de Soja-terceira Aproximação (Embrapa Soja-Documentos (INFOTECA-E), 2012).
IBGE. Divisão Regional do Brasil em Mesorregiões e Microrregiões Geográficas. v. 1. (IBGE, 1990).
GraphPad Prism. GraphPad Prism version 8.1.2 for Windows, GraphPad Software, San Diego. www.graphpad.com.
Huang, F., Parker, R., Leonard, R., Yong, Y. & Liu, J. Frequency of resistance alleles to Bacillus thuringiensis-corn in Texas populations of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). Crop Prot. 28, 174–180 (2009).
Google Scholar
Rodrigues-Silva, N. et al. Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars. Sci. Rep. 9, 1–9 (2019).
Google Scholar
Yano, S. A. C. et al. Tolerância de Anticarsia gemmatalis Hübner, Pseudoplusia includens (Walker) e Rachiplusia nu (Guenée) à proteína Cry1Ac. In: Embrapa Soja-Artigo em anais de congresso (ALICE). (Embrapa, 2012).
Perini, C. R. et al. Genetic structure of two Plusiinae species suggests recent expansion of Chrysodeixis includens in the American continent. Agric. For. Entomol. 23, 250–260 (2020).
Google Scholar
Bueno, A. F. et al. Challenges for adoption of integrated pest management (IPM): The soybean example. Neotrop. Entomol. 50, 5–20 (2021).
Google Scholar
Carrière, Y. et al. Governing evolution: A socio-ecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio 49, 1–16 (2020).
Google Scholar
Heinrichs, E. A. & Silva, R. F. P. Estudo de níveis de população de Anticarsia gemmatalis Hubner, 1818 e Plusia sp. em soja no Rio Grande do Sul. Agron. Sulriograndense 11, 29–35 (1975).
Guedes, J. V. C. Lagartas da soja: das lições do passado ao manejo do futuro. Rev. Plantio Direto 144, 10–22 (2015).
Silva, C. S. et al. Population expansion and genomic adaptation to agricultural environments of the soybean looper, Chrysodeixis includens. Evol. Appl. 13, 2071–2085 (2020).
Google Scholar
Bacalhau, F. B. et al. Performance of genetically modified soybean expressing the Cry1A. 105, Cry2Ab2, and Cry1Ac proteins against key Lepidopteran pests in Brazil. J. Econ. Entomol. 113, 2883–2889 (2020).
Google Scholar
Source: Ecology - nature.com