in

Resistance to permethrin alters the gut microbiota of Aedes aegypti

  • 1.

    WHO Pesticides and their application for the control of vectors and pests of public health importance. In WHO/CDS/NTD/WHOPES/GCDPP/2006.1 (2006).

  • 2.

    Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 101, 207–216 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    N’Guessan, R., Corbel, V., Akogbeto, M. & Rowland, M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg. Infect. Dis. 13, 199–206 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Chareonviriyaphap, T. et al. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit. Vectors 6, 280 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Liu, N. insecticide resistance in mosquitoes: Impact, mechanisms and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Dada, N. et al. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus. ISME J. 10, 2447–2464 (2019).

    Article 

    Google Scholar 

  • 8.

    Dada, N., Sheth, M., Liebman, K., Pinto, J. & Lenhart, A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 8, 2084 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Soltani, A., Vatandoost, H., Oshaghi, M. A., Enayati, A. A. & Chavshin, A. R. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog. Glob. Health 111, 289–296 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Pietri, J.E., Tiffany, C. & Liang, D. Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest. PLoS One 13, e0207985 (2018).

  • 11.

    Cheng, D. et al. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5, 13 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Xia, X. et al. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8, e68852 (2013).

  • 13.

    Xia, X. et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol. 9, 25 (2018).

  • 14.

    Kontsedalov, S. et al. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag. Sci. 64, 789–792 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Ghanim, M. & Kontsedalov, S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag. Sci. 65, 939–942 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 8618–8622 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Badolo, A. et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou, Burkina Faso. PLoS Negl. Trop. Dis. 13, e0007439 (2019).

  • 18.

    Kandel, Y. et al. Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A. PLoS One 14, e0212693 (2019).

  • 19.

    Amelia-Yap, Z. H., Chen, C. D., Sofian-Azirun, M. & Low, V. L. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasit. Vectors 11, 332 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Li, W., Jin, D., Shi, C. & Li, F. Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci. Rep. 7, 1947 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Barnard, K., Jeanrenaud, A., Brooke, B. D. & Oliver, S. V. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci. Rep. 9, 9117 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Tetreau, G. et al. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasit. Vectors 11, 121 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Aislabie, J. & Lloyd-Jones, G. A review of bacterial degradation of pesticides. Aust. J. Soil Res. 33, 925–942 (1995).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Lien, N. T. K. et al. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the dengue mosquito (Aedes aegypti) in Vietnam. Am. J. Trop. Med. Hyg. 100, 1240–1248 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Berticat, C., Rousset, F., Raymond, M., Berthomieu, A. & Weill, M. High Wolbachia density in insecticide-resistant mosquitoes. Proc. R. Soc. Lond. Ser. B-Biol.l Sci. 269, 1413–1416 (2002).

  • 26.

    Hamada, M., Matar, A. & Bashir, A. Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip. Braz. J. Microbiol. 46, 1087–1091 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Akbar, S., Sultan, S. & Kertesz, M. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Curr. Microbiol. 70, 75–84 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Durand, C., Ruban, V., Ambles, A., Clozel, B. & Achard, L. Characterisation of road sediments near Bordeaux with emphasis on phosphorus. J. Environ. Monit. 5, 463–467 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds—From one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Zhu, K. Y., Merzendorfer, H., Zhang, W., Zhang, J. & Muthukrishnan, S. Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol. 61, 177–196 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Czaplicka, M. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21–39 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Igbinosa, E.O. et al. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 460215 (2013).

  • 34.

    Li, N., Chen, J. M., Zhang, Y. F., He, Y. P. & Chen, L. Z. Comparison for activities of detoxifying enzymes between in resistant-strains and susceptible-imidacloprid endosymbiotic strains of rice brown planthopper, Nilaparvata lugens. Acta Agric. Univ. Zhejiangensis 22, 653–659 (2010).

    Google Scholar 

  • 35.

    Dowd, P. F. & Shen, S. K. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol. Exp. Appl. 56, 241–248 (1990).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Brogdon, W. G. & McAllister, J. C. Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J. Am. Mosq. Control Assoc. 14, 159–164 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Muturi, E. J., Njoroge, T. M., Dunlap, C. & Caceres, C. E. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasit. Vectors 14, 83 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Arndt, D. et al. METAGENassist: A comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40, W88–W95 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 4, 4–9 (2001).

    Google Scholar 

  • 43.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.3–5. https://CRAN.R-project.org/package=vegan (2016).

  • 45.

    Quinn, G. & Keough, M. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).

    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Secretary Kathleen Theoharides on climate and energy in Massachusetts

    Forest canopy mitigates soil N2O emission during hot moments