WHO Pesticides and their application for the control of vectors and pests of public health importance. In WHO/CDS/NTD/WHOPES/GCDPP/2006.1 (2006).
Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 101, 207–216 (2007).
Google Scholar
N’Guessan, R., Corbel, V., Akogbeto, M. & Rowland, M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg. Infect. Dis. 13, 199–206 (2007).
Google Scholar
Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2010).
Google Scholar
Chareonviriyaphap, T. et al. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit. Vectors 6, 280 (2013).
Google Scholar
Liu, N. insecticide resistance in mosquitoes: Impact, mechanisms and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).
Google Scholar
Dada, N. et al. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus. ISME J. 10, 2447–2464 (2019).
Google Scholar
Dada, N., Sheth, M., Liebman, K., Pinto, J. & Lenhart, A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 8, 2084 (2018).
Google Scholar
Soltani, A., Vatandoost, H., Oshaghi, M. A., Enayati, A. A. & Chavshin, A. R. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog. Glob. Health 111, 289–296 (2017).
Google Scholar
Pietri, J.E., Tiffany, C. & Liang, D. Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest. PLoS One 13, e0207985 (2018).
Cheng, D. et al. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5, 13 (2017).
Google Scholar
Xia, X. et al. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8, e68852 (2013).
Xia, X. et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol. 9, 25 (2018).
Kontsedalov, S. et al. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag. Sci. 64, 789–792 (2008).
Google Scholar
Ghanim, M. & Kontsedalov, S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag. Sci. 65, 939–942 (2009).
Google Scholar
Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 8618–8622 (2012).
Google Scholar
Badolo, A. et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou, Burkina Faso. PLoS Negl. Trop. Dis. 13, e0007439 (2019).
Kandel, Y. et al. Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A. PLoS One 14, e0212693 (2019).
Amelia-Yap, Z. H., Chen, C. D., Sofian-Azirun, M. & Low, V. L. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasit. Vectors 11, 332 (2018).
Google Scholar
Li, W., Jin, D., Shi, C. & Li, F. Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci. Rep. 7, 1947 (2017).
Google Scholar
Barnard, K., Jeanrenaud, A., Brooke, B. D. & Oliver, S. V. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci. Rep. 9, 9117 (2019).
Google Scholar
Tetreau, G. et al. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasit. Vectors 11, 121 (2018).
Google Scholar
Aislabie, J. & Lloyd-Jones, G. A review of bacterial degradation of pesticides. Aust. J. Soil Res. 33, 925–942 (1995).
Google Scholar
Lien, N. T. K. et al. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the dengue mosquito (Aedes aegypti) in Vietnam. Am. J. Trop. Med. Hyg. 100, 1240–1248 (2019).
Google Scholar
Berticat, C., Rousset, F., Raymond, M., Berthomieu, A. & Weill, M. High Wolbachia density in insecticide-resistant mosquitoes. Proc. R. Soc. Lond. Ser. B-Biol.l Sci. 269, 1413–1416 (2002).
Hamada, M., Matar, A. & Bashir, A. Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip. Braz. J. Microbiol. 46, 1087–1091 (2015).
Google Scholar
Akbar, S., Sultan, S. & Kertesz, M. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Curr. Microbiol. 70, 75–84 (2015).
Google Scholar
Durand, C., Ruban, V., Ambles, A., Clozel, B. & Achard, L. Characterisation of road sediments near Bordeaux with emphasis on phosphorus. J. Environ. Monit. 5, 463–467 (2003).
Google Scholar
Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132 (2009).
Google Scholar
Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds—From one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).
Google Scholar
Zhu, K. Y., Merzendorfer, H., Zhang, W., Zhang, J. & Muthukrishnan, S. Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol. 61, 177–196 (2016).
Google Scholar
Czaplicka, M. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21–39 (2004).
Google Scholar
Igbinosa, E.O. et al. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 460215 (2013).
Li, N., Chen, J. M., Zhang, Y. F., He, Y. P. & Chen, L. Z. Comparison for activities of detoxifying enzymes between in resistant-strains and susceptible-imidacloprid endosymbiotic strains of rice brown planthopper, Nilaparvata lugens. Acta Agric. Univ. Zhejiangensis 22, 653–659 (2010).
Dowd, P. F. & Shen, S. K. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol. Exp. Appl. 56, 241–248 (1990).
Google Scholar
Brogdon, W. G. & McAllister, J. C. Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J. Am. Mosq. Control Assoc. 14, 159–164 (1998).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).
Google Scholar
Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
Google Scholar
Muturi, E. J., Njoroge, T. M., Dunlap, C. & Caceres, C. E. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasit. Vectors 14, 83 (2021).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Arndt, D. et al. METAGENassist: A comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40, W88–W95 (2012).
Google Scholar
Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 4, 4–9 (2001).
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.3–5. https://CRAN.R-project.org/package=vegan (2016).
Quinn, G. & Keough, M. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).
Google Scholar
Source: Ecology - nature.com