in

Respiratory adaptation to climate in modern humans and Upper Palaeolithic individuals from Sungir and Mladeč

  • 1.

    Hiernaux, J. & Froment, A. The correlations between anthropobiological and climatic variables in sub-Saharan Africa: revised estimates. Hum. Biol. 48, 757–767 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Roseman, C. C. & Weaver, T. D. Multivariate apportionment of global human craniometric diversity. Am. J. Phys. Anthropol. 125, 257–263 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Harvati, K. & Weaver, T. D. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 1225–1233 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Hubbe, M., Hanihara, T. & Harvati, K. Climate signatures in the morphological differentiation of worldwide modern human populations. Anat. Rec. 292, 1720–1733 (2009).

    Article 

    Google Scholar 

  • 5.

    Betti, L., Balloux, F., Hanihara, T. & Manica, A. The relative role of drift and selection in shaping the human skull. Am. J. Phys. Anthropol. 141, 76–82 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Noback, M. L., Harvati, K. & Spoor, F. Climate-related variation of the human nasal cavity. Am. J. Phys. Anthropol. 145, 599–614 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Evteev, A. A., Movsesian, A. A. & Grosheva, A. N. The association between mid-facial morphology and climate in northeast Europe differs from that in north Asia: implications for understanding the morphology of Late Pleistocene Homo sapiens. J. Hum. Evol. 107, 36–48 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Maddux, S. D., Butaric, L. N., Yokley, T. R. & Franciscus, R. G. Ecogeographic variation across morphofunctional units of the human nose. Am. J. Phys. Anthropol. 162, 103–119 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Menéndez, L. P. Moderate climate signature in cranial anatomy of late holocene human populations from Southern South America. Am. J. Phys. Anthropol. 165, 309–326 (2018).

    Article 

    Google Scholar 

  • 10.

    van Andel, T. H. & Davies, W. Neanderthals and modern humans in the European landscape during the last glaciation: archaeological results of the Stage 3 Project. 265 (McDonald Institute for Archaeological Research Monographs, 2003).

  • 11.

    Smith, H. F. Which cranial regions reflect molecular distances reliably in humans? Evidence from three-dimensional morphology. Am. J. Hum. Biol. 21, 36–47 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Reyes-Centeno, H., Ghirotto, S. & Harvati, K. Genomic validation of the differential preservation of population history in modern human cranial anatomy. Am. J. Phys. Anthropol. 162, 170–179 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Stansfield Bulygina, E., Rasskasova, A., Berezina, N. & Soficaru, A. D. Resolving relationships between several Neolithic and Mesolithic populations in Northern Eurasia using geometric morphometrics. Am. J. Phys. Anthropol. 164, 163–183 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    von Cramon-Taubadel, N. The relative efficacy of functional and developmental cranial modules for reconstructing global human population history. Am. J. Phys. Anthropol. 146, 83–93 (2011).

    Article 

    Google Scholar 

  • 15.

    Evteev, A., Cardini, A. L., Morozova, I. & O’Higgins, P. Extreme climate, rather than population history, explains mid-facial morphology of Northern Asians. Am. J. Phys. Anthropol. 153, 449–462 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Butaric, L. N. & Maddux, S. D. Morphological Covariation between the Maxillary Sinus and Midfacial Skeleton among Sub-Saharan and Circumpolar Modern Humans. Am. J. Phys. Anthropol. 160, 483–497 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Maddux, S. D. & Butaric, L. N. Zygomaticomaxillary morphology and maxillary sinus form and function: how spatial constraints influence pneumatization patterns among modern humans. Anat. Rec. 300, 209–225 (2017).

    Article 

    Google Scholar 

  • 18.

    Holton, N., Yokley, T. & Butaric, L. The morphological interaction between the nasal cavity and maxillary sinuses in living humans. Anat. Rec. 296, 414–426 (2013).

    Article 

    Google Scholar 

  • 19.

    Ito, T., Kawamoto, Y., Hamada, Y. & Nishimura, T. D. Maxillary sinus variation in hybrid macaques: implications for the genetic basis of craniofacial pneumatization. Biol. J. Linn. Soc. Lond. 115, 333–347 (2015).

    Article 

    Google Scholar 

  • 20.

    Fukase, H., Ito, T. & Ishida, H. Geographic variation in nasal cavity form among three human groups from the Japanese Archipelago: ecogeographic and functional implications. Am. J. Hum. Biol. 28, 343–351 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Mitteroecker, P., Grunstra, N. D. S., Stansfield, E., Waltenberger, L. & Fischer, B. Bulletins et mémoires de la Société d’anthropologie de Paris (under review).

  • 22.

    de Azevedo, S. et al. Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans. Proc. Natl. Acad. Sci. U. S. A. 114, 12442–12447 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Wroe, S. et al. Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting. Proc. R. Soc. B Biol. Sci. 285, 20180085 (2018).

    Article 

    Google Scholar 

  • 24.

    Bader, O. N. Sungir: Upper Palaeolithic Site (Nauka, 1978).

    Google Scholar 

  • 25.

    Nalawade-Chavan, S., McCullagh, J. & Hedges, R. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia. PLoS ONE 9, e76896 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Trinkaus, E., Buzhilova, A. P., Mednikova, M. B. & Dobrovolʹskaia, M. V. The People of Sunghir: Burials, Bodies, and Behavior in the Earlier Upper Paleolithic (Oxford University Press, 2014).

    Google Scholar 

  • 27.

    Wild, E. M. et al. Direct dating of Early Upper Palaeolithic human remains from Mladeč. Nature 435, 332–335 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Teschler-Nicola, M. Taphonomic Aspects of the Human Remains from the Mladeč Cave. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and Their Remains (ed. Teschler-Nicola, M.) 75–98 (Springer, 2006).

    Google Scholar 

  • 29.

    Wolpoff, M. H., Frayer, D. W. & Jelínek, J. Aurignacian Female Crania and Teeth from the Mladeč Caves, Moravia, Czech Republic. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and Their Remains (ed. Teschler-Nicola, M.) 273–340 (Springer, 2006).

    Google Scholar 

  • 30.

    Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Trinkaus, E. & Svoboda, J. The Paleobiology of the Pavlovian People. In Early Human Evolution in Central Europe: The People of Dolní Věstonice and Pavlov (eds Trinkaus, E. & Svoboda, J.) 459–466 (Oxford University Press, 2006).

    Google Scholar 

  • 32.

    Svoboda, J. Environment and Upper Palaeolithic adaptations in Moravia. in Man and Environment in the
    Palaeolithic. Actes du symposium de Neuwied (2-7 mai 1993) (ed. Ullrich, H.) vol. 62 291–295 (ERAUL Liège,
    1995).

  • 33.

    Svoboda, J. A. The structure of the cave, stratigraphy, and depositional context. in Early Modern Humans at the Moravian Gate (ed. Teschler-Nicola, M.) 27–40 (Springer, 2006).

  • 34.

     Kovanda, J. Molluscs from the section with the skeleton of Upper Palaeolithic man at Dolní Vestonice. Journ. Sci. Cent. Nat. Coord. Etud. Rech. Nutr. Aliment. 54, 89–96 (1991).

  • 35.

    Gugalinskaya, L. D. & Alifanov, V. M. The Sungir settlement: patterns of formation. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 43–48 (Nauchny Mir, 2000).

    Google Scholar 

  • 36.

    Lavrushin, Y. A., Sulerzhiski, L. D. & Spiridonova, E. A. Age of the Sunghir archaeological site and environmental conditions at the time of the prehistoric man. Homo sungirensis. Upper Palaeolithic man (eds.Alexeeva, T.I.; Bader, N.O.; Munchaev, R.M.; Buzhilova, A.P.; Kozlovskaya, M.V.; Mednikova, M.B.) 35–42 (2000).

  • 37.

    Velichko, A. A. & Morozova, T. D. Basic features of late pleistocene soil formation in the east european plain and their paleogeographic interpretation. Eurasian Soil Sci. 43, 1535–1546 (2010).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Dagvadorj, D. & Mijiddorj, R. Climate change issues in Mongolia. Hydrometeorological Issues in Mongolia. in Papers in Hydrometeorology, Special Issue, (eds. Dagvadorj, D. and Natsagdorj, L.) Hydrometeorological
    Research Institute, 79–88. (Ulaanbaatar, 1996).

  • 39.

    Boldanov, T. A. & Mukhin, G. D. Ecological adaptation of agricultural land use under climate change in the Republic of Buryatia. Arid. Ecosyst. 9, 7–14 (2019).

    Article 

    Google Scholar 

  • 40.

    Batima, P., Natsagdorj, L., Gombluudev, P. & Erdenetsetseg, B. Observed climate change in Mongolia. in Assessments of Impacts and Adaptations of Climate Change 1–29 (START, the Third World Academy of Sciences, and the UN Environment Programme, 2005).

  • 41.

    Bunak, V. V. The fossil man from the Sunghir settlement and his place among other Late Paleolithic fossils. In Physical Anthropology of European Populations (ed. Schwidetzky, I.) 245–256 (Mouton Publishers, 1980).

    Google Scholar 

  • 42.

    Mednikova, M. B. Adaptive biological trends in the European upper palaeolithic: the case of the Sunghir remains. J. Physiol. Anthropol. Appl. Human Sci. 24, 425–431 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Bader, O. & Bader, N. Ecological and evolutionary aspects of the investigation. In Homo sungirensis. Upper Palaeolithic man (eds, Alexeeva, T.I.; Bader, N.O.; Munchaev, R.M.; Buzhilova, A.P.; Kozlovskaya, M.V.; Mednikova, M.B.) 35–42
    (Nauka, 2000).

  • 44.

    Evteev, A. A. & Grosheva, A. N. Nasal cavity and maxillary sinuses form variation among modern humans of Asian descent. Am. J. Phys. Anthropol. 169, 513–525 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Cole, P. Modification of inspired air. In The Nose: Upper Airway Physiology and the Atmospheric Environment (eds Proctor, D. F. & Anderson, I. B.) 351–375 (Elsevier Biomedical Press, 1982).

    Google Scholar 

  • 46.

    Elad, D., Wolf, M. & Keck, T. Air-conditioning in the human nasal cavity. Respir. Physiol. Neurobiol. 163, 121–127 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Franciscus, R. G. Later Pleistocene Nasofacial Variation in Western Eurasia and Africa and Modern Human Origins (The University of New Mexico, 1995).

    Google Scholar 

  • 48.

    Buck, L. Craniofacial Morphology, Adaptation, and Paranasal Pneumatisation in Pleistocene Hominins (University of Roehampton, 2014).

    Google Scholar 

  • 49.

    Butaric, L. N. Differential scaling patterns in maxillary sinus volume and nasal cavity breadth among modern humans. Anat. Rec. 298, 1710–1721 (2015).

    Article 

    Google Scholar 

  • 50.

    Naftali, S., Rosenfeld, M., Wolf, M. & Elad, D. The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 33, 545–553 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Oxnard, C. E. Project MUSE—The Order of Man. https://muse.jhu.edu/book/12405 (1983).

  • 52.

    Debets, G. F. Late Palaeolithic male skeleton from the Sungir burial site. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 147–149 (Nauchny Mir, 2000).

    Google Scholar 

  • 53.

    Hall, R. L. Energetics of nose and mouth breathing, body size, body composition, and nose volume in young adult males and females. Am. J. Hum. Biol. 17, 321–330 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Bastir, M., Godoy, P. & Rosas, A. Common features of sexual dimorphism in the cranial airways of different human populations. Am. J. Phys. Anthropol. 146, 414–422 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Holton, N. E., Yokley, T. R., Froehle, A. W. & Southard, T. E. Ontogenetic scaling of the human nose in a longitudinal sample: implications for genus Homo facial evolution. Am. J. Phys. Anthropol. 153, 52–60 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Steegmann, A. T. Jr., Cerny, F. J. & Holliday, T. W. Neandertal cold adaptation: physiological and energetic factors. Am. J. Hum. Biol. 14, 566–583 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 57.

    Froehle, A. W., Yokley, T. R. & Churchill, S. E. Energetics and
    the origin of modern humans. in The origins of modern humans: biology reconsidered (eds. Smith, F. and Ahern, J.) 285–320 (Wiley, 2013).

  • 58.

    Khrisanfova, E. N. Sungir 1 in ecological and evolutionary aspects. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 345–350 (Nauchny Mir, 2000).

    Google Scholar 

  • 59.

    Formicola, V. & Holt, B. Tall guys and fat ladies: Grimaldi’s Upper Paleolithic burials and figurines in an historical perspective. J. Anthropol. Sci. 93, 71–88 (2015).

    PubMed 

    Google Scholar 

  • 60.

    Weinstein, K. J. Thoracic morphology in Near Eastern Neandertals and early modern humans compared with recent modern humans from high and low altitudes. J. Hum. Evol. 54, 287–295 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Markova, A. K., Simakova, A. N., Puzachenko, A. Y. & Kitaev, L. M. Environments of the Russian Plain during the Middle Valdai Briansk Interstade (33,000–24,000 yr B.P.) indicated by fossil mammals and plants. Quat. Res. 57, 391–400 (2002).

    Article 

    Google Scholar 

  • 62.

    Rusakov, A. et al. Landscape evolution in the periglacial zone of Eastern Europe since MIS5: Proxies from paleosols and sediments of the Cheremoshnik key site (Upper Volga, Russia). Quat. Int. 365, 26–41 (2015).

    Article 

    Google Scholar 

  • 63.

    Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Haesaerts, P. et al. Charcoal and wood remains for radiocarbon dating Upper Pleistocene loess sequences in Eastern Europe and Central Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 106–127 (2010).

    Article 

    Google Scholar 

  • 65.

    Antoine, P. et al. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quat. Sci. Rev. 67, 17–38 (2013).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Moine, O., Antoine, P., Deschodt, L. & Sellier-Segard, N. Enregistrements malacologiques à haute résolution dans les lœss et les gleys de toundra du pléniglaciaire weichselien supérieur: premiers exemples du nord de la France. Quaternaire. Revue de l’Association française pour l’étude du Quaternaire 22, 307–325 (2011).

    Google Scholar 

  • 67.

    Moine, O., Rousseau, D.-D. & Antoine, P. The impact of Dansgaard-Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the Upper Weichselian. Quat. Res. 70, 91–104 (2008).

    Article 

    Google Scholar 

  • 68.

    Butaric, L. N., Stansfield, E., Vasilyev, A. Y. & Vasilyev, S. CT-Based Descriptions of the paranasal complex of Sungir-1, an Upper Paleolithic European. PaleoAnthropology 389, 399 (2019).

    Google Scholar 

  • 69.

    Stalling, D. et al. Amira: a highly interactive system for visual data analysis. Vis. Handb. 38, 749–767 (2005).

    Google Scholar 

  • 70.

    Prossinger, H. et al. Electronic removal of encrustations inside the Steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anat. Rec. Part B New Anat. Off. Publ. Am. Assoc. Anat. 273, 132–142 (2003).

    Google Scholar 

  • 71.

    Prossinger, H. & Teschler-Nicola, M. Electronic segmentation methods reveal the preservation status and otherwise unobservable features of the Mladeč 1 Cranium. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and their Remains (ed. Teschler-Nicola, M.) 341–356 (Springer, 2006).

    Google Scholar 

  • 72.

    Weber, G. W. & Bookstein, F. L. Virtual Anthropology: A Guide to a New Interdisciplinary Field (Springer, 2011).

    Google Scholar 

  • 73.

    Fedorov, A. et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W. & Bookstein, F. L. Principles for the virtual reconstruction of hominin crania. J. Hum. Evol. 57, 48–62 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Betti, L., Balloux, F., Amos, W., Hanihara, T. & Manica, A. Distance from Africa, not climate, explains within-population phenotypic diversity in humans. Proc. Biol. Sci. 276, 809–814 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Roseman, C. C. Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc. Natl. Acad. Sci. U. S. A. 101, 12824–12829 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. U. S. A. 102, 15942–15947 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

  • 79.

    Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph. (2021).

  • 80.

    Schlager, S. Soft-Tissue Reconstruction of the Human Nose: Population Differences and Sexual Dimorphism, Anthropologie (Universität Freiburg, 2013).

    Google Scholar 

  • 81.

    Le Maître, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).

    Article 

    Google Scholar 

  • 82.

    Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).

    Google Scholar 

  • 83.

    Grunstra, N. D. S., Mitteroecker, P. & Foley, R. A. A multivariate ecogeographic analysis of macaque craniodental variation. Am. J. Phys. Anthropol. 166, 386–400 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Izenman, A. J. Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 5, 248–264 (1975).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 85.

    Aldrin, M. Multivariate prediction using softly shrunk reduced-rank regression. Am. Stat. 54, 29–34 (2000).

    Google Scholar 

  • 86.

    Mitteroecker, P., Cheverud, J. M. & Pavlicev, M. Multivariate analysis of genotype–phenotype association. Genetics 202, 1345–1363 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).


  • Source: Ecology - nature.com

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Negative emissions, positive economy