in

Response to substrate limitation by a marine sulfate-reducing bacterium

[adace-ad id="91168"]
  • 1.

    Jørgensen BB. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature. 1982;296:643–5.

    Article 

    Google Scholar 

  • 2.

    Kasten S, Jørgensen BB. Sulfate reduction in marine sediments. In: Schulz H, Zabel M, editors. Marine geochemistry. Berlin: Springer; 2000. pp. 263–81.

  • 3.

    Pellerin A, Antler G, Røy H, Findlay A, Beulig F, Scholze C, et al. The sulfur cycle below the sulfate-methane transition of marine sediments. Geochim Cosmochim Acta. 2018;239:74–89.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev. 2007;107:486–513.

    CAS 
    Article 

    Google Scholar 

  • 5.

    Holmkvist L, Ferdelman TG, Jørgensen BB. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta. 2011;75:3581–99.

    CAS 
    Article 

    Google Scholar 

  • 6.

    Starnawski P, Bataillon T, Ettema TJ, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017;114:2940–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Jørgensen BB, Marshall IP. Slow microbial life in the seabed. Annu Rev Mar Sci. 2016;8:311–32.

    Article 

    Google Scholar 

  • 9.

    Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Button DK. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985;49:270–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    De Mattos MT, Neijssel OM. Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol. 1997;59:117–26.

    Article 

    Google Scholar 

  • 12.

    Egli T. How to live at very low substrate concentration. Water Res. 2010;44:4826–37.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature. 2020;579:250–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Zinke LA, Mullis MM, Bird JT, Marshall IP, Jørgensen BB, Lloyd KG, et al. Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. Environ Microbiol Rep. 2017;9:528–36.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Orsi WD, Jørgensen BB, Biddle JF. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor. Environ Microbiol Rep. 2016;8:452–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Orsi WD, Edgcomb VP, Christman GD, Biddle JF. Gene expression in the deep biosphere. Nature. 2013;499:205–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Cappenberg TE. A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria. Microb Ecol. 1975;2:60–72.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Middleton AC, Lawrence AW. Kinetics of microbial sulfate reduction. J Water Pollut Control Fed. 1977;49:1659–70.

    CAS 

    Google Scholar 

  • 19.

    Nethe-Jaenchen R, Thauer RK. Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Arch Microbiol. 1984;137:236–40.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ingvorsen K, Zehnder AJ, Jørgensen BB. Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl Environ Microbiol. 1984;47:403–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Cypionka H, Pfennig N. Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol. 1986;143:396–9.

    CAS 
    Article 

    Google Scholar 

  • 22.

    Okabe S, Characklis WG. Effects of temperature and phosphorous concentration on microbial sulfate reduction by Desulfovibrio desulfuricans. Biotechnol Bioeng. 1992;39:1031–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Okabe S, Nielsen PH, Characklis WG. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol Bioeng. 1992;40:725–34.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Habicht KS, Salling L, Thamdrup B, Canfield DE. Effect of low sulfate concentrations on lactate oxidation and isotope fractionation during sulfate reduction by Archaeoglobus fulgidus strain Z. Appl Environ Microbiol. 2005;71:3770–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Davidson MM, Bisher ME, Pratt LM, Fong J, Southam G, Pfiffner SM, et al. Sulfur isotope enrichment during maintenance metabolism in the thermophilic sulfate-reducing bacterium Desulfotomaculum putei. Appl Environ Microbiol. 2009;75:5621–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Brysch K, Schneider C, Fuchs G, Widdel F. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol. 1987;148:264–74.

    CAS 
    Article 

    Google Scholar 

  • 27.

    Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, et al. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol. 2009;11:1038–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Dörries M, Wöhlbrand L, Rabus R. Differential proteomic analysis of the metabolic network of the marine sulfate-reducer Desulfobacterium autotrophicum HRM2. Proteomics. 2016;16:2878–93.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front Microbiol. 2019;10:758.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Jochum LM, Chen X, Lever MA, Loy A, Jørgensen BB, Schramm A, et al. Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of Aarhus Bay. Appl Environ Microbiol. 2017;83:e01547–17.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol. 2007;9:131–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Tarpgaard IH, Jørgensen BB, Kjeldsen KU, Røy H. The marine sulfate reducer Desulfobacterium autotrophicum HRM2 can switch between low and high apparent half-saturation constants for dissimilatory sulfate reduction. FEMS Microbiol Ecol. 2017;93:fix012.

    Article 
    CAS 

    Google Scholar 

  • 33.

    Marietou A, Røy H, Jørgensen BB, Kjeldsen KU. Sulfate transporters in dissimilatory sulfate reducing microorganisms: a comparative genomics analysis. Front Microbiol. 2018;9:309.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Tarpgaard IH, Røy H, Jørgensen BB. Concurrent low-and high-affinity sulfate reduction kinetics in marine sediment. Geochim Cosmochim Acta. 2011;75:2997–3010.

    CAS 
    Article 

    Google Scholar 

  • 35.

    Volpi M, Lomstein BA, Sichert A, Røy H, Jørgensen BB, Kjeldsen KU. Identity, abundance, and reactivation kinetics of thermophilic fermentative endospores in cold marine sediment and seawater. Front Microbiol. 2017;8:131.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Glombitza C, Pedersen J, Røy H, Jørgensen BB. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry. Limnol Oceanogr Methods. 2014;12:455–68.

    CAS 
    Article 

    Google Scholar 

  • 37.

    Glombitza C, Jaussi M, Røy H, Seidenkrantz MS, Lomstein BA, Jørgensen BB. Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland. Front Microbiol. 2015;6:846.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Reese BK, Finneran DW, Mills HJ, Zhu MX, Morse JW. Examination and refinement of the determination of aqueous hydrogen sulfide by the methylene blue method. Aquat Geochem. 2011;17:567.

    CAS 
    Article 

    Google Scholar 

  • 39.

    Beulig F, Røy H, McGlynn SE, Jørgensen BB. Cryptic CH 4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME J. 2019;13:250–62.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. MBio 2017;8:e00671–17.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012;40:D115–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Rabus R, Venceslau SS, Wöhlbrand L, Voordouw G, Wall JD, Pereira IAC. Chapter two—a post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv Micro Physiol. 2015;66:55–321.

    CAS 
    Article 

    Google Scholar 

  • 43.

    Finke N, Vandieken V, Jørgensen BB. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol. 2007;59:10–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Sonne-Hansen J, Westermann P, Ahring BK. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3. Appl Environ Microbiol. 1999;65:1304–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Keller KL, Wall JD. Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front Microbiol. 2011;2:135.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Molenaar D, Van Berlo R, De Ridder D, Teusink B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol. 2009;5:323.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol. 2006;72:3653–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Meyer B, Kuehl JV, Price MN, Ray J, Deutschbauer AM, Arkin AP, et al. The energy-conserving electron transfer system used by Desulfovibrio alaskensis strain G 20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membrane-bound complexes, Hdr-Flox and Rnf. Environ Microbiol. 2014;16:3463–86.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Noguera DR, Brusseau GA, Rittmann BE, Stahl DA. A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechn Bioengin. 1998;59:732–46.

    CAS 
    Article 

    Google Scholar 

  • 50.

    Odom JM, Peck HD Jr. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett. 1981;12:47–50.

    CAS 
    Article 

    Google Scholar 

  • 51.

    Lupton FS, Conrad R, Zeikus JG. Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol. 1984;159:843–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Jin Q, Bethke CM. Cellular energy conservation and the rate of microbial sulfate reduction. Geology. 2009;37:1027–30.

    CAS 
    Article 

    Google Scholar 

  • 53.

    Hoskisson PA, Hobbs G. Continuous culture-making a comeback? Microbiology. 2005;151:3153–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci. 1999;96:2896–901.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Hocking WP, Stokke R, Roalkvam I, Steen IH. Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses. Front Microbiol. 2014;5:95.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Pereira IA, Ramos AR, Grein F, Marques MC, Da Silva SM, Venceslau SS. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol. 2011;2:69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Noji H, Yoshida M. The rotary machine in the cell, ATP synthase. J Biol Chem. 2001;276:1665–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Plugge CM, Scholten JC, Culley DE, Nie L, Brockman FJ, Zhang W. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism. Microbiol. 2010;156:2746–56.

    CAS 
    Article 

    Google Scholar 

  • 59.

    Phadtare S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 2004;6:125–36.

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Rabus R, Brüchert V, Amann J, Könneke M. Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol. 2002;42:409–17.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Barker HA. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem. 1981;50:23–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Zinser ER, Kolter R. Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol. 1999;181:5800–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Wick LM, Quadroni M, Egli T. Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol. 2001;3:588–99.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Vollmer AC, Bark SJ. Twenty-five years of investigating the universal stress protein: function, structure, and applications. In: Advances in applied microbiology. Academic Press; 2018. pp. 1–36.

  • 65.

    Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan XF, et al. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol. 2006;72:5578–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Schauder R, Preuß A, Jetten M, Fuchs G. Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol. 1988;151:84–9.

    Article 

    Google Scholar 

  • 67.

    Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, et al. Regulation of acetyl coenzyme A synthetase in. Escherichia coli J Bacteriol. 2000;182:4173–9.

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Wang Q, Ou MS, Kim Y, Ingram LO, Shanmugam KT. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase. Appl Environ Microbiol. 2010;76:2107–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol Adv. 2019;37:284–305.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Verhagen MF, O’Rourke T, Adams MW. The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta. 1999;1412:212–29.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Rabus RA, Hansen TA, Widdel FR. Dissimilatory sulfate-and sulfur-reducing prokaryotes. Prokaryotes. 2006;2:659–768.

    Article 

    Google Scholar 

  • 72.

    Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C, Johnston DT, et al. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science. 2015;350:1541–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Buckel W, Thauer RK. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front Microbiol. 2018;9:401.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Venceslau SS, Stockdreher Y, Dahl C, Pereira IAC. The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. BBA Bioenerg. 2014;1837:1148–64.

    CAS 
    Article 

    Google Scholar 

  • 75.

    Grein F, Ramos AR, Venceslau SS, Pereira IA. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. BBA Bioenerg. 2013;1827:145–60.

    CAS 
    Article 

    Google Scholar 

  • 76.

    Stahlmann J, Warthmann R, Cypionka H. Na+-dependent accumulation of sulfate and thiosulfate in marine sulfate-reducing bacteria. Arch Microbiol. 1991;155:554–8.

    CAS 
    Article 

    Google Scholar 

  • 77.

    Wöhlbrand L, Ruppersberg H, Feenders C, Blasius B, Braun HP, Rabus R. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. Proteomics. 2016;16:973–88.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Marietou A, Lund MB, Marshall IP, Schreiber L, Jørgensen BB. Complete genome sequence of Desulfobacter hydrogenophilus AcRS1. Mar Genom. 2020;50:100691.

    Article 

    Google Scholar 

  • 79.

    Zhang W, Culley DE, Wu G, Brockman FJ. Two-component signal transduction systems of Desulfovibrio vulgaris: structural and phylogenetic analysis and deduction of putative cognate pairs. J Mol Evol. 2006;62:473–87.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Rajeev L, Luning EG, Dehal PS, Price MN, Arkin AP, Mukhopadhyay A. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium. Genome Biol. 2011;12:R99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Taher R, de Rosny E. A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra. Biochim Biophys Acta. 2020;1865:129810.

    Article 
    CAS 

    Google Scholar 

  • 82.

    Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science. 2014;345:676–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Yoon S, Cruz-García C, Sanford R, Ritalahti KM, Löffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3−/NO2− reduction pathways in Shewanella loihica strain PV-4. ISME J. 2015;9:1093–104.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate‐reducing bacteria prevents their inhibition by nitrate‐reducing, sulphide‐oxidizing bacteria. Environ Microbiol. 2003;5:607–17.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Ingvorsen K, Jørgensen BB. Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol. 1984;139:61–6.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Push to make supply chains more sustainable continues to gain momentum

    Manipulating magnets in the quest for fusion