in

Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest

  • 1.

    Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.

    Google Scholar 

  • 2.

    Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst. 2016;47:143–64.

    Google Scholar 

  • 3.

    Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367:eaba1223.

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 2010;25:468–78.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Ke PJ, Miki T. Incorporating the soil environment and microbial community into plant competition theory. Front Microbiol. 2015;6:1066.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science. 2017;355:173–6.

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv. 2018;4:eaau4578.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Chen L, Swenson NG, Ji N, Mi X, Ren H, Guo L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–8.

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    LaManna JA, Walton ML, Turner BL, Myers JA. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol Lett. 2016;19:657–67.

    PubMed 

    Google Scholar 

  • 13.

    Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol Evol. 2018;2:1403–7.

    PubMed 

    Google Scholar 

  • 14.

    Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002;154:275–304.

    PubMed 

    Google Scholar 

  • 15.

    van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature. 2018;558:243–8.

    PubMed 

    Google Scholar 

  • 16.

    Schroeder JW, Martin JT, Angulo DF, Razo IAD, Barbosa JM, Perea R, et al. Host plant phylogeny and abundance predict root‐associated fungal community composition and diversity of mutualists and pathogens. J Ecol. 2019;107:1557–66.

    Google Scholar 

  • 17.

    Jiang J, Karen CA, Mara B, Maarten BE, James AE, James DB. Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications for plant competition and succession. Am Nat. 2020;195:591–602.

    Google Scholar 

  • 18.

    Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA. Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nat Commun. 2020;11:2204.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen‐host range. Proc Natl Acad Sci USA. 2007;104:4979–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S. Experimental evidence for a phylogenetic Janzen‐Connell effect in a subtropical forest. Ecol Lett. 2012;15:111–8.

    PubMed 

    Google Scholar 

  • 21.

    Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S. Arbuscular mycorrhizal fungi counteract the Janzen‐Connell effect of soil pathogens. Ecology. 2015;96:562–74.

    PubMed 

    Google Scholar 

  • 22.

    Benítez MS, Hersh MH, Vilgalys R, Clark JS. Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol. 2013;28:705–11.

    PubMed 

    Google Scholar 

  • 23.

    Klironomos J, Zobel M, Tibbett M. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol. 2011;189:366–70.

    PubMed 

    Google Scholar 

  • 24.

    van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco Lett. 2008;11:296–310.

    Google Scholar 

  • 25.

    Wiegand T, Moloney KA. Rings, circles, and null‐models for point pattern analysis in ecology. Oikos. 2004;104:209–29.

    Google Scholar 

  • 26.

    Perry GL, Miller BP, Enright NJ. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol. 2006;187:59–82.

    Google Scholar 

  • 27.

    Law R, Illian J, Burslem DF, Gratzer G, Gunatilleke CV, Gunatilleke IA. Ecological information from spatial patterns of plants: insights from point process theory. J Ecol. 2009;97:616–28.

    Google Scholar 

  • 28.

    Liang M, Liu X, Parker IM, Johnson D, Zheng Y, Luo S, et al. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Sci Adv. 2019;5:eaax5088.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Chen Y, Jia P, Cadotte MW, Wang P, Liu X, Qi Y, et al. Rare and phylogenetically distinct plant species exhibit less diverse root-associated pathogen communities. J Ecol. 2019;107:1226–37.

    Google Scholar 

  • 30.

    Peters HA. Neighbour‐regulated mortality: the influence of positive and negative density dependence on tree populations in species‐rich tropical forests. Ecol Lett. 2003;6:757–65.

    Google Scholar 

  • 31.

    Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, et al. Random forests for classification in ecology. Ecology. 2007;88:2783–92.

    PubMed 

    Google Scholar 

  • 32.

    Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY – a global database of plant traits. Glob Chang Biol. 2011;17:2905–35.

    PubMed Central 

    Google Scholar 

  • 33.

    Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012;195:844–56.

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.

    Google Scholar 

  • 35.

    Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, Jonathan R, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794–805.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Wang Z, Jiang Y, Deane DC, He F, Shu W, Liu Y. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytol. 2019;223:462–74.

    PubMed 

    Google Scholar 

  • 37.

    Zhao Z, Li X, Liu MF, Merckx VS, Saunders RM, Zhang D. Specificity of assemblage, not fungal partner species, explains mycorrhizal partnerships of mycoheterotrophic Burmannia plants. ISME J. 2021;15:1614–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Peay KG, Baraloto C, Fine PV. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Barberán A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, et al. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett. 2015;18:1397–405.

    PubMed 

    Google Scholar 

  • 40.

    LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat Ecol Evol. 2017;1:1107–15.

    PubMed 

    Google Scholar 

  • 41.

    Peh KS, Lewis SL, Lloyd J. Mechanisms of monodominance in diverse tropical tree‐dominated systems. J Ecol. 2011;99:891–8.

    Google Scholar 

  • 42.

    Johnson DJ, Clay K, Phillips RP. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia. 2018;186:195–204.

    PubMed 

    Google Scholar 

  • 43.

    Waud M, Busschaert P, Lievens B, Jacquemyn H. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol. 2016;20:155–65.

    Google Scholar 

  • 44.

    Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 2018;217:1230–9.

    PubMed 

    Google Scholar 

  • 45.

    Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.

    Google Scholar 

  • 46.

    Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol. 1997;85:561–73.

    Google Scholar 

  • 47.

    Bardgett RD, Wardle DA. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. New York: Oxford University Press; 2010.

  • 48.

    Kandlikar GS, Johnson CA, Yan X, Kraft NJ, Levine JM. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol Lett. 2019;22:1178–91.

    PubMed 

    Google Scholar 

  • 49.

    Swenson NG, Iida Y, Howe R, Wolf A, Umaña MN, Petprakob K, et al. Tree co-occurrence and transcriptomic response to drought. Nat Commun. 2017;8:1996.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia. 2016;59:179–87.

    Google Scholar 

  • 51.

    Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.

    Google Scholar 

  • 52.

    Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 2018;220:971–6.

    PubMed 

    Google Scholar 

  • 54.

    Egan CP, Rummel A, Kokkoris V, Klironomos J, Lekberg Y, Hart MM. Using mock communities of arbuscular mycorrhizal fungi to evaluate fidelity associated with Illumina sequencing. Fungal Ecol. 2018;33:52–64.

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists project increased risk to water supplies in South Africa this century

    Turn taking is not restricted by task specialisation but does not facilitate equality in offspring provisioning