in

ROV assessment of mesophotic fish and associated habitats across the continental shelf of the Amathole region

  • 1.

    Milligan, R. J., Spence, G., Roberts, J. M. & Bailey, D. M. Fish communities associated with cold-water corals vary with depth and substratum type. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 43–54 (2016).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Anderson, T. J., Syms, C., Roberts, D. A. & Howard, D. F. Multi-scale fish-habitat associations and the use of habitat surrogates to predict the organisation and abundance of deep-water fish assemblages. J. Exp. Mar. Bio. Ecol. 379, 34–42 (2009).

    Article 

    Google Scholar 

  • 3.

    Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).

    Article 

    Google Scholar 

  • 4.

    Hinderstein, L. M. et al. Mesophotic coral ecosystems: Characterization, ecology, and management. Coral Reefs 29, 247–251 (2010).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. 8, 1–13 (2018).

    Google Scholar 

  • 6.

    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article 

    Google Scholar 

  • 7.

    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361(6399), 281–284 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Cerrano, C. et al. Temperate mesophotic ecosystems: gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).

    Article 

    Google Scholar 

  • 9.

    Williams, J., Jordan, A., Harasti, D., Davies, P. & Ingleton, T. Taking a deeper look: Quantifying the differences in fish assemblages between shallow and mesophotic temperate rocky reefs. PLoS ONE 14, e0206778 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Bio. Ecol. 375, 1–8 (2009).

    Article 

    Google Scholar 

  • 11.

    Armstrong, R. A., Pizarro, O. & Roman, C. Underwater robotic technology for imaging mesophotic coral ecosystems. in Mesophotic Coral Ecosystems. 973–988. (Springer, 2019).

  • 12.

    Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).

    Article 

    Google Scholar 

  • 13.

    Durden, J. M. et al. Perspectives in visual imaging for marine biology and ecology: From acquisition to understanding. Oceanogr. Mar. Biol. Annu. Rev. 54, 1–72 (2016).

    Google Scholar 

  • 14.

    Stevens, T. & Connolly, R. M. Local-scale mapping of benthic habitats to assess representation in a marine protected area. Mar. Freshw. Res. 56, 111–123 (2005).

    Article 

    Google Scholar 

  • 15.

    Bernard, A. T. et al. New possibilities for research on reef fish across the continental shelf of South Africa. S. Afr. J. Sci. 110, 1–5. https://doi.org/10.1590/sajs.2014/a0079 (2014).

    Article 

    Google Scholar 

  • 16.

    Rees, S. E., Foster, N. L., Langmead, O., Pittman, S. & Johnson, D. E. Defining the qualitative elements of Aichi Biodiversity Target 11 with regard to the marine and coastal environment in order to strengthen global efforts for marine biodiversity conservation outlined in the United Nations Sustainable Development Goal 14. Mar. Policy 93, 241–250 (2018).

    Article 

    Google Scholar 

  • 17.

    South African National Biodiversity Institute. South Africa Announces New Marine Protected Area Network. https://www.sanbi.org/media/south-africa-announces-new-marine-protected-area-network/. (2018).

  • 18.

    der Bank, V., Harris, L., Atkinson, L., Kirkman, S., & Karenyi, N. Marine Realm in South African National Biodiversity Assessment 2018 Technical Report. Vol. 4 (South African National Biodiversity Institute, 2019).

  • 19.

    Sink, K. The marine protected areas debate: Implications for the proposed Phakisa marine protected areas network. S. Afr. J. Sci. 112, 9–10 (2016).

    Article 

    Google Scholar 

  • 20.

    Turpie, J. K., Beckley, L. E. & Katua, S. M. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biol. Conserv. 92, 59–72 (2000).

    Article 

    Google Scholar 

  • 21.

    Götz, A. & Phillips, M. SAEON Elwandle Applies Expertise to Marine Protected Area Management in Amathole. http://www.saeon.ac.za/enewsletter/archives/2016/august2016/doc03 (2019).

  • 22.

    DEA (Department of Environmental Affairs). Notice Declaring the Amathole Offshore Marine Protected Area Under Section 22A of the National Environmental Management: Protected Areas Act, 2003 (Act No.57 of 2003). Government Gazette, Republic of South Africa (2016).

  • 23.

    Green, A. N. et al. Relict and contemporary influences on the postglacial geomorphology and evolution of a current swept shelf: The Eastern Cape Coast, South Africa. Mar. Geol. 427, 106230 (2020).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Parker, D., Winker, H., Attwood, C. & Kerwath, S. Dark times for dageraad Chrysoblephus cristiceps: Evidence for stock collapse. Afr. J. Mar. Sci. 38, 341–349. https://doi.org/10.2989/1814232X.2016.1200142 (2016).

    Article 

    Google Scholar 

  • 25.

    Kerwath, S. et al. Tracking the decline of the world’s largest seabream against policy adjustments. Mar. Ecol. Prog. Ser. 610, 163–173. https://doi.org/10.3354/meps12853 (2019).

    ADS 
    Article 

    Google Scholar 

  • 26.

    African Coelacanth Ecosystem Programme Project. African Coelacanth Ecosystem Programme Project Overviews 2017/2018. (2018).

  • 27.

    Donovan, B. A Retrospective Assessment of the Port Alfred Linefishery with Respect to the Changes in the South African Fisheries Management Environment (Rhodes University, 2010).

    Google Scholar 

  • 28.

    International Union for Conservation of Nature and Natural Resources. The IUCN Red List of Threatened Species (IUCN Global Species Programme Red List Unit, 2017).

    Google Scholar 

  • 29.

    Götz, A., Kerwath, S. E., Attwood, C. G. & Sauer, W. H. H. Effects of fishing on population structure and life history of roman Chrysoblephus laticeps (Sparidae). Mar. Ecol. Prog. Ser. 362, 245–259 (2008).

    ADS 
    Article 

    Google Scholar 

  • 30.

    McCord, M. & Zweig, T. Fisheries: Facts and Trends. http://awsassets.wwf.org.za/downloads/wwf_a4_fish_facts_report_lr.pdf (2011).

  • 31.

    Southern African Marine Linefish Species Profiles (South African Association for Marine Biological Research, 2013).

  • 32.

    Smith, J. L. B. Smiths’ Sea Fishes. https://doi.org/10.1007/978-3-642-82858-4 (Springer, 1986).

  • 33.

    Compagno, L. J. V., Ebert, D. A. & Smale, M. J. Guide to the Sharks and Rays of Southern Africa (Struik, 1989).

    Google Scholar 

  • 34.

    Peres, M. B. & Klippel, S. Reproductive biology of Southwestern Atlantic wreckfish, Polyprion americanus (Teleostei: Polyprionidae). Environ. Biol. Fish. 68, 163–173 (2003).

    Article 

    Google Scholar 

  • 35.

    Baillon, S., Hamel, J.-F., Wareham, V. E. & Mercier, A. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356 (2012).

    Article 

    Google Scholar 

  • 36.

    Sink, K. J., Boshoff, W., Samaai, T., Timm, P. G. & Kerwath, S. E. Observations of the habitats and biodiversity of the submarine canyons at Sodwana Bay: Coelacanth research. S. Afr. J. Sci. 102, 466–474 (2006).

    Google Scholar 

  • 37.

    Heemstra, P. C. & Heemstra, E. Coastal Fishes of Southern Africa (National Inquiry Services Centre, 2004).

    Google Scholar 

  • 38.

    Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fish. 102, 479–497. https://doi.org/10.1007/s10641-019-0845-4 (2019).

    Article 

    Google Scholar 

  • 39.

    Booth, A. J. & Buxton, C. D. The biology of the panga, Pterogymnus laniarius (Teleostei: Sparidae), on the Agulhas Bank, South Africa. Environ. Biol. Fish. 49, 207–226 (1997).

    Article 

    Google Scholar 

  • 40.

    Turner, J. A., Babcock, R. C., Hovey, R. & Kendrick, G. A. Deep thinking: A systematic review of mesophotic coral ecosystems. ICES J. Mar. Sci. 74, 2309–2320. https://doi.org/10.1093/icesjms/fsx085 (2017).

    Article 

    Google Scholar 

  • 41.

    Heyns, E., Bernard, A. T., Richoux, N. & Götz, A. Depth-related distribution patterns of subtidal macrobenthos in a well-established marine protected area. Mar. Biol. 163, 39. https://doi.org/10.1007/s00227-016-2816-z (2016).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Bridge, T. C. L. et al. Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30, 143–153 (2011).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Doty, M. S. & Oguri, M. The Island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).

    Article 

    Google Scholar 

  • 44.

    Fabricius, K. E., Logan, M., Weeks, S. & Brodie, J. The effects of river run-off on water clarity across the central Great Barrier Reef. Mar. Pollut. Bull. 84, 191–200 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).

    Article 

    Google Scholar 

  • 46.

    Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Bio. Ecol. 150, 163–182 (1991).

    Article 

    Google Scholar 

  • 47.

    Tait, R. V. & Dipper, F. Elements of marine ecology (Butterworth-Heinemann, 1998).

    Google Scholar 

  • 48.

    Williams, A. & Bax, N. J. Delineating fish-habitat associations for spatially based management: An example from the south-eastern Australian continental shelf. Mar. Freshw. Res. 52, 513 (2001).

    Article 

    Google Scholar 

  • 49.

    Pearson, R. & Stevens, T. Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar. Ecol. Prog. Ser. 532, 185–196 (2015).

    ADS 
    Article 

    Google Scholar 

  • 50.

    MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Fukunaga, A., Kosaki, R. K. & Wagner, D. Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands. Coral Reefs 36, 785–790 (2017).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Sih, T. L., Cappo, M. & Kingsford, M. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia). Sci. Rep. 7, 10886 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: What have we learned so far?. Am. Nat. 163, E1-23 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Makwela, M. S. et al. Notes on a remotely operated vehicle survey to describe reef ichthyofauna and habitats—Agulhas Bank, South Africa. Bothalia 46, 1–7 (2016).

    Article 

    Google Scholar 

  • 56.

    Quantum GIS Development Team. Quantum GIS Geographic Information System. (2002).

  • 57.

    Kleczkowski, M., Babcock, R. C. & Clapin, G. Density and size of reef fishes in and around a temperate marine reserve. Mar. Freshw. Res. 59, 165 (2008).

    Article 

    Google Scholar 

  • 58.

    Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).

  • 60.

    Charrad, M., Ghazzali, N., Boiteau, V. & Maintainer, A. N. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1 (2014).

    Article 

    Google Scholar 

  • 61.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).

    Google Scholar 

  • 62.

    De’ath, G. Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology 83, 1105 (2002).

    Google Scholar 

  • 63.

    Zuur, A. F. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • 64.

    South African National Biodiversity Institute. https://www.sanbi.org/. (2021).


  • Source: Ecology - nature.com

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    Researchers design sensors to rapidly detect plant hormones