in

Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean

  • 1.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Cullen-Unsworth, L. C. et al. Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 83, 387–397 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Nellemann, C. et al. Blue Carbon: a rapid response assessment. United Nations Environment Programme, GRID-Arendal (2009).

  • 4.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • 5.

    Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106, 12377–12381 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nature Commun. 10, 1–8 (2019).

  • 8.

    Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. PNAS 115, 3658–3662 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Conserv. 226, 120–126 (2018).

    Article 

    Google Scholar 

  • 12.

    McKenzie, L. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Den Hartog, C., & Kuo, J. Taxonomy and biogeography of seagrasses. In Seagrasses: biology, ecology and conservation (pp. 1–23). Springer, Dordrecht (2007).

  • 14.

    Duarte, C. M. & Chiscano, C. L. Seagrass biomass and production: a reassessment. Aquat. Bot. 65, 159–174 (1999).

    Article 

    Google Scholar 

  • 15.

    Serrano, O., Lavery, P. S., Rozaimi, M. & Mateo, M. A. Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochemic. Cy. 28, 950–961 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Gullström, M. et al. Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant–sediment processes, and landscape context: insights from the western Indian Ocean. Ecosystems 21, 551–566 (2018).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Lavery, P. S., Mateo, M. Á., Serrano, O. & Rozaimi, M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8, e73748 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Campbell, J. E., Lacey, E. A., Decker, R. A., Crooks, S. & Fourqurean, J. W. Carbon storage in seagrass beds of Abu Dhabi United Arab Emirates. Estuaries Coast 38, 242–251 (2015).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Miyajima, T. et al. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochemic. Cy. 29, 397–415 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Röhr, M. E. et al. Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows. Global Biogeochemic. Cy. 32, 1457–1475 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 1–10 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Prentice, C. et al. A synthesis of blue carbon stocks, sources and accumulation rates in eelgrass (Zostera marina) meadows in the Northeast Pacific. Global Biogeochemic. Cy. 34, e2019GB006345 (2020).

  • 23.

    Herrera-Silveira, J. A. et al. Blue carbon of Mexico, carbon stocks and fluxes: a systematic review. PeerJ 8, e8790 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Carruthers, T. J. B., Barnes, P. A., Jacome, G. & Fourqurean, J. W. Lagoon scale processes in a coastally influenced Caribbean system: implications for the seagrass Thalassia testudinum. Caribb. J. Sci. 41, 441–455 (2005).

    Google Scholar 

  • 25.

    Tamis, J. E., & Foekema, E. M. A review of blue carbon in the Netherlands. IMARES Report C151/15. 13 p. (2016).

  • 26.

    Thorhaug, A. L. et al. Gulf of Mexico estuarine blue carbon stock, extent and flux: Mangroves, marshes, and seagrasses: A North American hotspot. Sci. Total Environ. 653, 1253–1261 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Novak, A. B. et al. Factors influencing carbon stocks and accumulation rates in eelgrass meadows across New England, USA. Estuaries Coast. 43, 2076–2091 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Howard, J. L., Creed, J. C., Aguia, M. V. & Fourqurean, J. W. CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon”. Limnol. Oceanogr. 63, 160–172 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Nóbrega, G. N., Romero, D. J., Otero, X. L., & Ferreira, T. O. Pedological studies of subaqueous soils as a contribution to the protection of seagrass meadows in Brazil. Rev Bras Cienc Solo 42 (2018).

  • 30.

    Gómez-Lopez, D., C. et al. Informe técnico Final Proyecto de Actualización cartográfica del atlas de pastos marinos de Colombia: Sectores Guajira, Punta San Bernardo y Chocó: Extensión y estado actual. PRY-BEM-005–13 FONADE-INVEMAR. Santa Marta. 136 pp. (2014).

  • 31.

    Díaz, M., Barrios Suárez, L. M., & Gómez López, D. I. Las praderas de pastos marinos en Colombia: Estructura y distribución de un ecosistema estratégico, Instituto de Investigaciones Marinas y Costeras-INVEMAR (2003).

  • 32.

    Green, E. P., Short, F. T., & Frederick, T. World atlas of seagrasses. Univ of California Press (2003).

  • 33.

    Phang, V. X., Chou, L. M. & Friess, D. A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf Process Landf 40, 1387–1400 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Alongi, D. M. et al. Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetl. Ecol. Manag. 24, 3–13 (2016).

    Article 

    Google Scholar 

  • 35.

    Thorhaug, A., Poulos, H. M., López-Portillo, J., Ku, T. C. & Berlyn, G. P. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Sci. Total Environ. 605, 626–636 (2017).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 36.

    Oreska, M. P., McGlathery, K. J. & Porter, J. H. Seagrass blue carbon spatial patterns at the meadow-scale. PLoS ONE 12, e0176630 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Serrano, O. et al. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?. Biogeosciences 17, 4915–4926 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Chen, G. et al. Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Sci. Rep. 7, 42406 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Cusack, M. et al. Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environ. Res. Lett. 13, 074007 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Lafratta, A. et al. Challenges to select suitable habitats and demonstrate ‘additionality’ in Blue Carbon projects: A seagrass case study. Ocean Coast. Manag. 197, 105295 (2020).

    Article 

    Google Scholar 

  • 41.

    Gómez-López, D.I. et al. Reporte del estado de los arrecifes coralinos y pastos marinos en Colombia (2016–2017). Serie de publicaciones Generales del Invemar # 101, Santa Marta. 100 pp. (2018).

  • 42.

    Alvarez-León, R., Aguilera-Quiñonez, J., Andrade-Maya, C. C. & Novak, P. Caracterización general de la zona de surgencia en la Guajira Colombiana. Rev. Acad. Colomb. Cienc. 19, 679–694 (1995).

    Google Scholar 

  • 43.

    Wilson, S. S., Furman, B. T., Hall, M. O. & Fourqurean, J. W. Assessment of Hurricane Irma impacts on South Florida seagrass communities using long-term monitoring programs. Estuaries Coast. 43, 1119–1132 (2020).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Hiraishi, T. et al. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland (2014).

  • 45.

    Diaz-M, J. M. & Gómez-López, D. I. Historic changes in the abundance and distribution of seagrass beds in the Cartagena bay and neighbouring areas (Colombia). Bol. Invest. Mar. Cost. 32, 57–74 (2003).

    Google Scholar 

  • 46.

    Ricart, A. M. et al. High variability of Blue Carbon storage in seagrass meadows at the estuary scale. Sci. Rep. 10, 1–12 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J. & Skilbeck, C. G. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob. Change Biol. 18, 891–901 (2012).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Geister, J., & Díaz-Merlano J. M. Reef environments and geology of an oceanic archipelago: San Andrés, Old Providence and Santa Catalina (Caribbean Sea, colombia) with Field Guide. Ingeominas. 104 pp (2007).

  • 49.

    Rodríguez-Ramírez, A. et al. Recent dynamics and condition of coral reefs in the Colombian Caribbean. Rev. Biol. Trop. 58, 107–131 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Serrano, O., Lavery, P. S., Lopez-Merino, L., Ballesteros, E. & Mateo, M. A. Location and associated carbon storage of erosional escarpments of seagrass Posidonia mats. Front. Mar. Sci. 3, 42 (2016).

    Article 

    Google Scholar 

  • 51.

    Freile, D., & Hillis, L. Carbonate productivity by Halimeda incrassata land in a proximal lagoon, Pico Feo, San Blas, Panama. In Proceedings 8th International Coral Reef Symposium 1, 767–772 (1997).

  • 52.

    van Tussenbroek, B. I. & van Dijk, J. K. Spatial and temporal variability in biomass and production of Psammophytic Halimeda incrassata (Bryopsidales, Chlorophyta) in a Caribbean reef lagoon. J. Phycol. 43, 69–77 (2007).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Macreadie, P. I., Serrano, O., Maher, D. T., Duarte, C. M. & Beardall, J. Addressing calcium carbonate cycling in blue carbon accounting. Limnol. Oceanogr. Lett. 2, 195–201 (2017).

    Article 

    Google Scholar 

  • 54.

    CDIAC, 2020. Carbon Dioxide Information Analysis Center

  • 55.

    Saderne, V. et al. Role of carbonate burial in Blue Carbon budgets. Nat. Commun. 10, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Challener, R. C., Robbins, L. L. & McClintock, J. B. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments. Mar. Freshw. Res. 67, 163–172 (2016).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).

    Article 

    Google Scholar 

  • 58.

    Conservation International (2020). Accesses in November 2020. https://www.conservation.org/stories/critical-investment-in-blue-carbon

  • 59.

    Coralina-Invemar. Gómez-López, D. I., C. Segura-Quintero, P. C. Sierra-Correa y J. Garay-Tinoco (Eds). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28. Santa Marta, Colombia 180 p. (2012).

  • 60.

    Glew, J. R., Smol, J. P., & Last, W. M. Sediment Core Collection and Extrusion. In: Tracking Environmental Change UsingLake Sediments. Kluwer Academic Publishers, 73–105 (2005).

  • 61.

    Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110 (2001).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Sanchez-Cabeza, J. A., Masqué, P. & Ani-Ragolta, I. 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J. Radioanal. Nucl. Chem. 227, 19–22 (1998).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Krishnaswamy, S., Lal, D., Martin, J. M. & Meybeck, M. Geochronology of lake sediments. Earth Planet. Sci. Lett. 11, 407–414 (1971).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 64.

    Stuiver, M. & Polach, H. A. Discussion reporting of 14 C data. Radiocarbon 19, 355–363 (1977).

    Article 

    Google Scholar 

  • 65.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 66.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).

    MathSciNet 

    Google Scholar 

  • 68.

    Parnell, A. C. Package “simmr”: A Stable Isotope Mixing Model. https://doi.org/10.1371/journal.pone.0009672 (2019).


  • Source: Ecology - nature.com

    MIT students and alumni “hack” Hong Kong Kowloon East

    Coexistence holes fill a gap in community assembly theory