Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
Google Scholar
Cullen-Unsworth, L. C. et al. Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 83, 387–397 (2014).
Google Scholar
Nellemann, C. et al. Blue Carbon: a rapid response assessment. United Nations Environment Programme, GRID-Arendal (2009).
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).
Google Scholar
Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).
Google Scholar
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106, 12377–12381 (2009).
Google Scholar
de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nature Commun. 10, 1–8 (2019).
Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. PNAS 115, 3658–3662 (2018).
Google Scholar
Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).
Google Scholar
Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).
Google Scholar
Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Conserv. 226, 120–126 (2018).
Google Scholar
McKenzie, L. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).
Google Scholar
Den Hartog, C., & Kuo, J. Taxonomy and biogeography of seagrasses. In Seagrasses: biology, ecology and conservation (pp. 1–23). Springer, Dordrecht (2007).
Duarte, C. M. & Chiscano, C. L. Seagrass biomass and production: a reassessment. Aquat. Bot. 65, 159–174 (1999).
Google Scholar
Serrano, O., Lavery, P. S., Rozaimi, M. & Mateo, M. A. Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochemic. Cy. 28, 950–961 (2014).
Google Scholar
Gullström, M. et al. Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant–sediment processes, and landscape context: insights from the western Indian Ocean. Ecosystems 21, 551–566 (2018).
Google Scholar
Lavery, P. S., Mateo, M. Á., Serrano, O. & Rozaimi, M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8, e73748 (2013).
Google Scholar
Campbell, J. E., Lacey, E. A., Decker, R. A., Crooks, S. & Fourqurean, J. W. Carbon storage in seagrass beds of Abu Dhabi United Arab Emirates. Estuaries Coast 38, 242–251 (2015).
Google Scholar
Miyajima, T. et al. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochemic. Cy. 29, 397–415 (2015).
Google Scholar
Röhr, M. E. et al. Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows. Global Biogeochemic. Cy. 32, 1457–1475 (2018).
Google Scholar
Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 1–10 (2019).
Google Scholar
Prentice, C. et al. A synthesis of blue carbon stocks, sources and accumulation rates in eelgrass (Zostera marina) meadows in the Northeast Pacific. Global Biogeochemic. Cy. 34, e2019GB006345 (2020).
Herrera-Silveira, J. A. et al. Blue carbon of Mexico, carbon stocks and fluxes: a systematic review. PeerJ 8, e8790 (2020).
Google Scholar
Carruthers, T. J. B., Barnes, P. A., Jacome, G. & Fourqurean, J. W. Lagoon scale processes in a coastally influenced Caribbean system: implications for the seagrass Thalassia testudinum. Caribb. J. Sci. 41, 441–455 (2005).
Tamis, J. E., & Foekema, E. M. A review of blue carbon in the Netherlands. IMARES Report C151/15. 13 p. (2016).
Thorhaug, A. L. et al. Gulf of Mexico estuarine blue carbon stock, extent and flux: Mangroves, marshes, and seagrasses: A North American hotspot. Sci. Total Environ. 653, 1253–1261 (2019).
Google Scholar
Novak, A. B. et al. Factors influencing carbon stocks and accumulation rates in eelgrass meadows across New England, USA. Estuaries Coast. 43, 2076–2091 (2020).
Google Scholar
Howard, J. L., Creed, J. C., Aguia, M. V. & Fourqurean, J. W. CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon”. Limnol. Oceanogr. 63, 160–172 (2018).
Google Scholar
Nóbrega, G. N., Romero, D. J., Otero, X. L., & Ferreira, T. O. Pedological studies of subaqueous soils as a contribution to the protection of seagrass meadows in Brazil. Rev Bras Cienc Solo 42 (2018).
Gómez-Lopez, D., C. et al. Informe técnico Final Proyecto de Actualización cartográfica del atlas de pastos marinos de Colombia: Sectores Guajira, Punta San Bernardo y Chocó: Extensión y estado actual. PRY-BEM-005–13 FONADE-INVEMAR. Santa Marta. 136 pp. (2014).
Díaz, M., Barrios Suárez, L. M., & Gómez López, D. I. Las praderas de pastos marinos en Colombia: Estructura y distribución de un ecosistema estratégico, Instituto de Investigaciones Marinas y Costeras-INVEMAR (2003).
Green, E. P., Short, F. T., & Frederick, T. World atlas of seagrasses. Univ of California Press (2003).
Phang, V. X., Chou, L. M. & Friess, D. A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf Process Landf 40, 1387–1400 (2015).
Google Scholar
Alongi, D. M. et al. Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetl. Ecol. Manag. 24, 3–13 (2016).
Google Scholar
Thorhaug, A., Poulos, H. M., López-Portillo, J., Ku, T. C. & Berlyn, G. P. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Sci. Total Environ. 605, 626–636 (2017).
Google Scholar
Oreska, M. P., McGlathery, K. J. & Porter, J. H. Seagrass blue carbon spatial patterns at the meadow-scale. PLoS ONE 12, e0176630 (2017).
Google Scholar
Serrano, O. et al. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?. Biogeosciences 17, 4915–4926 (2016).
Google Scholar
Chen, G. et al. Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Sci. Rep. 7, 42406 (2017).
Google Scholar
Cusack, M. et al. Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environ. Res. Lett. 13, 074007 (2018).
Google Scholar
Lafratta, A. et al. Challenges to select suitable habitats and demonstrate ‘additionality’ in Blue Carbon projects: A seagrass case study. Ocean Coast. Manag. 197, 105295 (2020).
Google Scholar
Gómez-López, D.I. et al. Reporte del estado de los arrecifes coralinos y pastos marinos en Colombia (2016–2017). Serie de publicaciones Generales del Invemar # 101, Santa Marta. 100 pp. (2018).
Alvarez-León, R., Aguilera-Quiñonez, J., Andrade-Maya, C. C. & Novak, P. Caracterización general de la zona de surgencia en la Guajira Colombiana. Rev. Acad. Colomb. Cienc. 19, 679–694 (1995).
Wilson, S. S., Furman, B. T., Hall, M. O. & Fourqurean, J. W. Assessment of Hurricane Irma impacts on South Florida seagrass communities using long-term monitoring programs. Estuaries Coast. 43, 1119–1132 (2020).
Google Scholar
Hiraishi, T. et al. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland (2014).
Diaz-M, J. M. & Gómez-López, D. I. Historic changes in the abundance and distribution of seagrass beds in the Cartagena bay and neighbouring areas (Colombia). Bol. Invest. Mar. Cost. 32, 57–74 (2003).
Ricart, A. M. et al. High variability of Blue Carbon storage in seagrass meadows at the estuary scale. Sci. Rep. 10, 1–12 (2020).
Google Scholar
Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J. & Skilbeck, C. G. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob. Change Biol. 18, 891–901 (2012).
Google Scholar
Geister, J., & Díaz-Merlano J. M. Reef environments and geology of an oceanic archipelago: San Andrés, Old Providence and Santa Catalina (Caribbean Sea, colombia) with Field Guide. Ingeominas. 104 pp (2007).
Rodríguez-Ramírez, A. et al. Recent dynamics and condition of coral reefs in the Colombian Caribbean. Rev. Biol. Trop. 58, 107–131 (2010).
Google Scholar
Serrano, O., Lavery, P. S., Lopez-Merino, L., Ballesteros, E. & Mateo, M. A. Location and associated carbon storage of erosional escarpments of seagrass Posidonia mats. Front. Mar. Sci. 3, 42 (2016).
Google Scholar
Freile, D., & Hillis, L. Carbonate productivity by Halimeda incrassata land in a proximal lagoon, Pico Feo, San Blas, Panama. In Proceedings 8th International Coral Reef Symposium 1, 767–772 (1997).
van Tussenbroek, B. I. & van Dijk, J. K. Spatial and temporal variability in biomass and production of Psammophytic Halimeda incrassata (Bryopsidales, Chlorophyta) in a Caribbean reef lagoon. J. Phycol. 43, 69–77 (2007).
Google Scholar
Macreadie, P. I., Serrano, O., Maher, D. T., Duarte, C. M. & Beardall, J. Addressing calcium carbonate cycling in blue carbon accounting. Limnol. Oceanogr. Lett. 2, 195–201 (2017).
Google Scholar
CDIAC, 2020. Carbon Dioxide Information Analysis Center
Saderne, V. et al. Role of carbonate burial in Blue Carbon budgets. Nat. Commun. 10, 1–9 (2019).
Google Scholar
Challener, R. C., Robbins, L. L. & McClintock, J. B. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments. Mar. Freshw. Res. 67, 163–172 (2016).
Google Scholar
Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).
Google Scholar
Conservation International (2020). Accesses in November 2020. https://www.conservation.org/stories/critical-investment-in-blue-carbon
Coralina-Invemar. Gómez-López, D. I., C. Segura-Quintero, P. C. Sierra-Correa y J. Garay-Tinoco (Eds). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28. Santa Marta, Colombia 180 p. (2012).
Glew, J. R., Smol, J. P., & Last, W. M. Sediment Core Collection and Extrusion. In: Tracking Environmental Change UsingLake Sediments. Kluwer Academic Publishers, 73–105 (2005).
Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110 (2001).
Google Scholar
Sanchez-Cabeza, J. A., Masqué, P. & Ani-Ragolta, I. 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J. Radioanal. Nucl. Chem. 227, 19–22 (1998).
Google Scholar
Krishnaswamy, S., Lal, D., Martin, J. M. & Meybeck, M. Geochronology of lake sediments. Earth Planet. Sci. Lett. 11, 407–414 (1971).
Google Scholar
Stuiver, M. & Polach, H. A. Discussion reporting of 14 C data. Radiocarbon 19, 355–363 (1977).
Google Scholar
Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
Google Scholar
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
Google Scholar
Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).
Google Scholar
Parnell, A. C. Package “simmr”: A Stable Isotope Mixing Model. https://doi.org/10.1371/journal.pone.0009672 (2019).
Source: Ecology - nature.com