in

Seasonal niche differentiation among closely related marine bacteria

  • 1.

    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Falkowski P. Ocean science: the power of plankton. Nature. 2012;483:S17–20.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Bunse C, Pinhassi J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25:1–12.

    Article 
    CAS 

    Google Scholar 

  • 4.

    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Eiler A, Hayakawa DH, Rappé MS. Non-random assembly of bacterioplankton communities in the subtropical North Pacific Ocean. Front Microbiol. 2011;2.

  • 6.

    Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, et al. Quantifying long‐term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35.

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Alonso-Sáez L, Díaz-Pérez L, Morán XAG. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol. 2015;17:3766–80.

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401.

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, et al. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun. 2018;9:266.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Lemonnier C, Perennou M, Eveillard D, Fernandez-Guerra A, Leynaert A, Marié L, et al. Linking spatial and temporal dynamic of bacterioplankton communities with ecological strategies across a coastal frontal area. Front Mar Sci. 2020;7:376.

    Article 

    Google Scholar 

  • 16.

    Lambert S, Lozano J-C, Bouget F-Y, Galand PE. Seasonal marine microorganisms change neighbours under contrasting environmental conditions. Environ Microbiol. 2021;23:2592–604.

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Hutchinson GE. Concluding remarks. Cold Spring Harb Sym. 1957;22:415–27.

    Article 

    Google Scholar 

  • 19.

    Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol. 2014;12:263–73.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Hammarlund SP, Gedeon T, Carlson RP, Harcombe WR. Limitation by a shared mutualist promotes coexistence of multiple competing partners. Nat Commun. 2021;12:619.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Schloss PD. Reintroducing mothur: 10 years later. Appl Environ Microbiol. 2020;86:13.

    Google Scholar 

  • 22.

    Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    VanInsberghe D, Arevalo P, Chien D, Polz MF. How can microbial population genomics inform community ecology? Philos Trans R Soc B. 2020;375:20190253.

    Article 

    Google Scholar 

  • 24.

    Tromas N, Taranu ZE, Martin BD, Willis A, Fortin N, Greer CW, et al. Niche separation increases with genetic distance among bloom-forming Cyanobacteria. Front Microbiol. 2018;9:438.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8:523–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Ladau J, Eloe-Fadrosh EA. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 2019;27:662–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Gasol JM, Cardelús C, Morán XAG, Balagué V, Forn I, Marrasé C, et al. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site. Sci Mar. 2016;80S1:63–77.

    Article 

    Google Scholar 

  • 29.

    Yentsch CS, Menzel DW. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res Oceanogr Abstr. 1963;10:221–31.

    CAS 
    Article 

    Google Scholar 

  • 30.

    Grasshoff K, Ehrhardt M, Kremling K. Methods of seawater analysis. 2nd ed. Weinheim: Verlag Chemie; 1983.

  • 31.

    Gasol JM, Morán XAG. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In: McGenity TJ, Timmis KN, Nogales B, editors. Hydrocarbon and lipid microbiology protocols: single-cell and single-molecule methods. Berlin, Heidelberg: Springer; 2016. p. 159–87.

  • 32.

    Massana R, Murray AE, Preston CM, Delong EF. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol. 1997;63:50–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.

    Article 

    Google Scholar 

  • 35.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.

    Article 

    Google Scholar 

  • 37.

    Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352.

    Article 

    Google Scholar 

  • 38.

    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    CAS 

    Google Scholar 

  • 39.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    Article 

    Google Scholar 

  • 40.

    Garczarek L, Guyet U, Doré H, Farrant GK, Hoebeke M, Brillet-Guéguen L, et al. Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Res 2020;49:gkaa958.

    Google Scholar 

  • 41.

    R Core Team. R: A language and environment for statistical computing. 2014. R Foundation for Statistical Computing, Vienna, Austria.

  • 42.

    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.

    Article 

    Google Scholar 

  • 44.

    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.

  • 45.

    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:1–9.

    Article 
    CAS 

    Google Scholar 

  • 47.

    Willis A, Bunge J, Whitman T.Improved detection of changes in species richness in high diversity microbial communities.J R Stat Soc Ser C-App Stat. 2017;66:963–77.

    Article 

    Google Scholar 

  • 48.

    Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics 2020;kxaa015.

  • 49.

    Ruf T. The Lomb-Scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biol Rhythm Res. 1999;30:178–201.

    Article 

    Google Scholar 

  • 50.

    Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser C-Appl Stat. 2001;63:411–23.

    Article 

    Google Scholar 

  • 51.

    Hastie T, Tibshirani R. Generalized additive models. Stat Sci. 1986;1:297–310.

    Google Scholar 

  • 52.

    Pedersen EJ, Miller DL, Simpson GL, Ross N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ. 2019;7:e6876.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: an R-package for Identifying proportionally abundant features using compositional data analysis. Sci Rep. 2017;7:1–9.

    Article 
    CAS 

    Google Scholar 

  • 54.

    Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Heiberger RM. HH: statistical analysis and data display: Heiberger and Holland. 2020.

  • 56.

    Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci USA. 2016;113:E3365–E3374.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Alonso-Sáez L, Balagué V, Sà EL, Sánchez O, González JM, Pinhassi J, et al. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol. 2007;60:98–112.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Mestre M, Höfer J, Sala MM, Gasol JM. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front Microbiol. 2020;11:1590.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Nunes S, Latasa M, Gasol JM, Estrada M. Seasonal and interannual variability of phytoplankton community structure in a Mediterranean coastal site. Mar Ecol Prog Ser. 2018;592:57–75.

    CAS 
    Article 

    Google Scholar 

  • 61.

    Lindh MV, Sjöstedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling: High-resolution temporal dynamics of marine bacteria. Environ Microbiol. 2015;17:2459–76.

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Viklund J, Martijn J, Ettema TJG, Andersson SGE. Comparative and phylogenomic evidence that the Alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade. PLoS One. 2013;8:e78858.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature. 2018;557:101–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 2015;9:347–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Guizien K, Charles F, Lantoine F, Naudin J-J. Nearshore dynamics of nutrients and chlorophyll during Mediterranean-type flash-floods. Aquat Living Resour. 2007;20:3–14.

    CAS 
    Article 

    Google Scholar 

  • 66.

    Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sci. 2017;9:231–55.

    Article 

    Google Scholar 

  • 67.

    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.

    CAS 
    Article 

    Google Scholar 

  • 68.

    Cadotte MW, Tucker CM. Should environmental filtering be abandoned? Trends Ecol Evol. 2017;32:429–37.

    PubMed 
    Article 

    Google Scholar 

  • 69.

    Tromas N, Taranu ZE, Castelli M, Pimentel JSM, Pereira DA, Marcoz R, et al. The evolution of realized niches within freshwater Synechococcus. Environ Microbiol. 2020;22:1238–50.

    PubMed 
    Article 

    Google Scholar 

  • 70.

    Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa: the ecological function of microdiversity. Env Microbiol Rep. 2017;9:55–70.

    CAS 
    Article 

    Google Scholar 

  • 72.

    Mestre M, Borrull E, Sala MM, Gasol JM. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 2017;11:999–1010.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016;10:596–608.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Faust K, Lahti L, Gonze D, de Vos WM, Raes J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol. 2015;25:56–66.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Lee J, Kwon KK, Lim S-I, Song J, Choi AR, Yang S-H, et al. Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322. J Microbiol. 2019;57:676–87.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Push to make supply chains more sustainable continues to gain momentum

    Manipulating magnets in the quest for fusion