in

Seasonal variation in sex-specific immunity in wild birds

  • 1.

    Abbas, A., Lichtman, A. H. & Pillai, S. Basic Immunology: Functions and Disorders of the Immune System 5th edn. (Elsevier, Amsterdam, 2015).

    Google Scholar 

  • 2.

    Møller, A. P. & Saino, N. Immune response and survival. Oikos 104, 299–304. https://doi.org/10.1111/j.0030-1299.2004.12844.x (2004).

    Article  Google Scholar 

  • 3.

    Hegemann, A., Matson, K. D., Flinks, H. & Tieleman, I. B. Offspring pay sooner, parents pay later: experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival. Front. Zool. 10, 77. https://doi.org/10.1186/1742-9994-10-77 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Nystrand, M. & Dowling, D. K. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans: a meta-analysis. BMC Biol. 18, 135. https://doi.org/10.1186/s12915-020-00856-7 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. PNAS 111, 869–874. https://doi.org/10.1073/pnas.1321060111 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Klein, S. & Flanagan, K. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638. https://doi.org/10.1038/nri.2016.90 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim. Behav. 68, 227–239. https://doi.org/10.1016/j.anbehav.2004.05.001 (2004).

    Article  Google Scholar 

  • 8.

    Foo, Y. Z. et al. The effects of sex hormones on immune function: a meta-analysis. Biol. Rev. 92, 551–571. https://doi.org/10.1111/brv.12243 (2017).

    Article  PubMed  Google Scholar 

  • 9.

    Kelly, C. D. et al. Sexual dimorphism in immunity across animals: a meta-analysis. Ecol. Lett. 21, 1885–1894. https://doi.org/10.1111/ele.13164 (2018).

    Article  PubMed  Google Scholar 

  • 10.

    Tella, J. L., Scheuerlein, A. & Ricklefs, R. E. Is cell-mediated immunity related to the evolution of life-history strategies in birds?. Proc. R. Soc. B. 269, 1059–1066. https://doi.org/10.1098/rspb.2001.1951 (2002).

    Article  PubMed  Google Scholar 

  • 11.

    Korver, D. R. Implications of changing immune function through nutrition in poultry. Anim. Feed. Sci. Technol. 173, 54–64. https://doi.org/10.1016/j.anifeedsci.2011.12.019 (2012).

    CAS  Article  Google Scholar 

  • 12.

    Demina, I. et al. Time-keeping programme can explain seasonal dynamics of leukocyte profile in a migrant bird. J. Avian Biol. 50, e02117. https://doi.org/10.1111/jav.02117 (2019).

    Article  Google Scholar 

  • 13.

    Martin, L. B. et al. Immune activity in temperate and tropical house sparrows: a common-garden experiment. Ecology 85, 2323–2331. https://doi.org/10.1890/03-0365 (2004).

    Article  Google Scholar 

  • 14.

    Hõrak, P. et al. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244. https://doi.org/10.1139/cjz-76-12-2235 (1998).

    Article  Google Scholar 

  • 15.

    Merrill, L. et al. Immune function in an avian brood parasite and its nonparasitic relative. Physiol. Biochem. Zool. 86, 61–72. https://doi.org/10.1086/668852 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Hasselquist, D. & Nilsson, J.-A. Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds?. Anim. Behav. 83, 1303–1312. https://doi.org/10.1016/j.anbehav.2012.03.025 (2012).

    Article  Google Scholar 

  • 17.

    Marais, M., Maloney, S. K. & Gray, D. A. The metabolic cost of fever in Pekin ducks. J. Therm. Biol. 36, 116–120. https://doi.org/10.1016/j.jtherbio.2010.12.004 (2011).

    Article  Google Scholar 

  • 18.

    Nilsson, J., Granbom, M. & Råberg, L. Does the strength of an immune response reflect its energetic cost?. J. Avian. Biol. 38, 488–494. https://doi.org/10.1111/j.0908-8857.2007.03919.x (2007).

    Article  Google Scholar 

  • 19.

    Bryant, D. M. & Westerterp, K. R. The energy budget of the House martin (Delichon urbica). Ardea 55, 91–102. https://doi.org/10.5253/arde.v68.p91 (1980).

    Article  Google Scholar 

  • 20.

    Maxson, S. J. & Oring, L. W. Breeding season time and energy budgets of the polyandrous spotted sandpiper. Behaviour 74, 200–263. https://doi.org/10.1163/156853980X00474 (1980).

    Article  Google Scholar 

  • 21.

    Brunton, D. H. Energy expenditure in reproductive effort of male and female Killdeer (Charadrius vociferus). Auk 105, 553–564. https://doi.org/10.1093/auk/105.3.553 (1988).

    Article  Google Scholar 

  • 22.

    Merrill, L. et al. Sex-specific variation in Brown-headed cowbird immunity following acute stress: a mechanistic approach. Oecologia 170, 25–38. https://doi.org/10.1007/s00442-012-2281-4 (2012).

    ADS  Article  PubMed  Google Scholar 

  • 23.

    Romero, L. M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128, 1–24. https://doi.org/10.1016/S0016-6480(02)00064-3 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Matson, K. D., Tieleman, B. I. & Klasing, K. C. Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol. Biochem. Zool. 79, 556–564. https://doi.org/10.1086/501057 (2006).

    Article  PubMed  Google Scholar 

  • 25.

    Cyr, N. E., Earle, K., Tam, C. & Romero, L. M. The effect of chronic psychological stress on corticosterone, plasma metabolites, and immune responsiveness in European starlings. Gen. Comp. Endocrinol. 154, 59–66. https://doi.org/10.1016/j.ygcen.2007.06.016 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Gao, S., Sanchez, C. & Deviche, P. J. Corticosterone rapidly suppresses innate immune activity in the House sparrow (Passer domesticus). J. Exp. Biol. 220, 322–327. https://doi.org/10.1242/jeb.144378 (2017).

    Article  PubMed  Google Scholar 

  • 27.

    Palacios, M. J. et al. Cellular and humoral immunity in two highly demanding energetic life stages: reproduction and moulting in the Chinstrap Penguin. J. Ornithol. 159, 283–290. https://doi.org/10.1007/s10336-017-1499-7 (2018).

    Article  Google Scholar 

  • 28.

    Martin, L. B. et al. Captivity induces hyper-inflammation in the house sparrow (Passer domesticus). J. Exp. Biol. 214, 2579–2585. https://doi.org/10.1242/jeb.057216 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Jakubas, D., Wojczulanis-Jakubas, K. & Kosmicka, A. Factors affecting leucocyte profiles in the Little auk, a small Arctic seabird. J. Ornithol. 156, 101–111. https://doi.org/10.1007/s10336-014-1101-5 (2015).

    Article  Google Scholar 

  • 30.

    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Nordling, D. et al. Reproductive effort reduces specific immune response and parasite resistance. Proc. Biol. Sci. 265, 1291–1298. https://doi.org/10.1098/rspb.1998.0432 (1998).

    Article  PubMed Central  Google Scholar 

  • 32.

    Merrill, L. et al. A blurring of life-history lines: immune function, molt and reproduction in a highly stable environment. Gen. Comp. Endocrinol. 213, 65–73. https://doi.org/10.1016/j.ygcen.2015.02.010 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097. https://doi.org/10.1136/bmj.b2535 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Davison, F., Kaspers, B. & Schat, K. A. Avian Immunology (Elsevier, Amsterdam, 2008).

    Google Scholar 

  • 35.

    Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol. 22, 760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x (2008).

    Article  Google Scholar 

  • 36.

    Dein, F. J. Hematology. In Clinical Avian Medicine and Surgery (eds Harrison, B. G. & Harrison, L. R.) 174–191 (WB Sander, Philadelphia, 1986).

    Google Scholar 

  • 37.

    Ots, I., Murumägi, A. & Hõrak, P. Haematological health state indices of reproducing Great tits: methodology and sources of natural variation. Funct. Ecol. 12, 700–707. https://doi.org/10.1046/j.1365-2435.1998.00219.x (1998).

    Article  Google Scholar 

  • 38.

    Hõrak, P. et al. Immune function and survival of great tit nestlings in relation to growth conditions. Oecologia 121, 316–322. https://doi.org/10.1007/s004420050934 (1999).

    ADS  Article  PubMed  Google Scholar 

  • 39.

    Ots, I. & Hõrak, P. Health impact of blood parasites in breeding great tits. Oecologia 166, 441–448. https://doi.org/10.1007/s004420050608 (1998).

    ADS  Article  Google Scholar 

  • 40.

    Skwarska, J. Variation of heterophil-to-lymphocyte ratio in the Great Tit Parus major: a review. Acta Ornithol. 53, 103–114. https://doi.org/10.3161/00016454AO2018.53.2.001 (2019).

    Article  Google Scholar 

  • 41.

    Davis, A. K. Effects of handling time and repeated sampling on avian white blood cell counts. J. Field Ornithol. 76, 334–338. https://doi.org/10.1648/0273-8570-76.4.334 (2005).

    Article  Google Scholar 

  • 42.

    Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct. Ecol. 20, 290–299. https://doi.org/10.1111/j.1365-2435.2006.01094.x (2006).

    Article  Google Scholar 

  • 43.

    French, S. S. & Neuman-Lee, L. A. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open. 1, 482–487. https://doi.org/10.1242/bio.2012919 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286. https://doi.org/10.1016/j.dci.2004.07.006 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Higgins, J. P. T. & Deeks, J. J. Selecting studies and collecting data. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. T. & Green, S.) 151–185 (Wiley, New York, 2008).

    Google Scholar 

  • 46.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. https://doi.org/10.18637/jss.v036.i03 (2010).

    Article  Google Scholar 

  • 47.

    Hedges, L. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 6, 107–128. https://doi.org/10.3102/10769986006002107 (1981).

    Article  Google Scholar 

  • 48.

    Rosenberg, M. S., Rothstein, H. & Gurevitch, J. Effect sizes: conventional choices and calculations. In Handbook of Meta-Analysis in Ecology and Evolution (eds Koricheva, J. et al.) 61–71 (Princeton University Press, Princeton, 2013).

    Google Scholar 

  • 49.

    Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448. https://doi.org/10.1038/nature11631 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 50.

    Holder, M. T., Sukumaran, J. & Lewis, P. O. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Syst. Biol. 57, 814–821. https://doi.org/10.1080/10635150802422308 (2008).

    Article  PubMed  Google Scholar 

  • 51.

    Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571. https://doi.org/10.1093/bioinformatics/btq228 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr. Zool. 61, 959–965. https://doi.org/10.1093/czoolo/61.6.959 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution (Princeton University Press, Princeton, 2013).

    Google Scholar 

  • 55.

    Egger, M., Smith, G. D. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. https://doi.org/10.1136/bmj.315.7109.629 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Sterne, J. A. & Egger, M. Regression methods to detect publication and other bias in meta-analysis. In Publication Bias in Meta-Analysis: Prevention, Assessment, and Adjustments (eds Rothstein, H. R. et al.) 99–110 (Wiley, New York, 2005).

    Google Scholar 

  • 57.

    Viechtbauer, W. & Cheung, M.W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125. https://doi.org/10.1002/jrsm.11 (2010).

    Article  PubMed  Google Scholar 

  • 58.

    Habeck, C. W. & Schultz, A. K. Community-level impacts of White-tailed deer on understorey plants in North American forests: a meta-analysis. AoB Plants 7, 119. https://doi.org/10.1093/aobpla/plv119 (2015).

    Article  Google Scholar 

  • 59.

    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (Wiley, New York, 2009).

    Google Scholar 

  • 60.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22. https://doi.org/10.18637/jss.v033.i02 (2010).

    Article  Google Scholar 

  • 61.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Article  Google Scholar 

  • 62.

    Plummer, M. et al. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).

    Google Scholar 

  • 63.

    Higgins, J. P. T. et al. Measuring inconsistency in meta-analysis. BMJ 327, 557–560. https://doi.org/10.1136/bmj.327.7414.557 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Clark, P., Boardman, W. S. J. & Raidal, S. R. Atlas of Clinical Avian Hematology (Wiley, New York, 2009).

    Google Scholar 

  • 65.

    Dehnhard, N. & Hennicke, J. C. Leucocyte profiles and body condition in breeding Brown boobies and Red-tailed tropicbirds: effects of breeding stage and sex. Aust. J. Zool. 61, 178–185. https://doi.org/10.1071/ZO12123 (2013).

    Article  Google Scholar 

  • 66.

    Gallo, L. et al. Hematology, plasma biochemistry, and trace element reference values for free-ranging adult Magellanic penguins (Spheniscus magellanicus). Polar Biol. 42, 733. https://doi.org/10.1007/s00300-019-02467-7 (2019).

    Article  Google Scholar 

  • 67.

    Garcia-Morales, C. et al. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages. J. Immunol. 194, 2338–2344. https://doi.org/10.4049/jimmunol.1401982 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Vehrencamp, S. L., Bradbury, J. W. & Gibson, R. M. The energetic cost of display in male sage grouse. Anim. Behav. 38, 885–896. https://doi.org/10.1016/S0003-3472(89)80120-4 (1989).

    Article  Google Scholar 

  • 69.

    Hambly, C., Markman, S., Roxburgh, L. & Pinshow, B. Seasonal sex-specific energy expenditure in breeding and non-breeding Palestine sunbirds Nectarinia osea. J. Avian Biol. 38, 190–197. https://doi.org/10.1111/j.2007.0908-8857.03774.x (2007).

    Article  Google Scholar 

  • 70.

    Fokidis, H. B. et al. Unpredictable food availability induces metabolic and hormonal changes independent of food intake in a sedentary songbird. J. Exp. Biol. 215, 2920–2930. https://doi.org/10.1242/jeb.071043 (2012).

    Article  PubMed  Google Scholar 

  • 71.

    Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879. https://doi.org/10.1007/s00360-012-0656-9 (2012).

    Article  PubMed  Google Scholar 

  • 72.

    Müller, C., Jenni-Eiermann, S. & Jenni, L. Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct. Ecol. 25, 566–576. https://doi.org/10.1111/j.1365-2435.2010.01816.x (2011).

    Article  Google Scholar 

  • 73.

    Oberkircher, M. C. & Smith Pagano, S. Seasonal variation in chronic stress and energetic condition in Gray Catbirds (Dumetella carolinensis) and Song Sparrows (Melospiza melodia). Auk 135, 83–90. https://doi.org/10.1642/AUK-17-79.1 (2018).

    Article  Google Scholar 

  • 74.

    Roberts, M. L. et al. The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response. J. Exp. Biol. 212, 3125–3131. https://doi.org/10.1242/jeb.030726 (2009).

    Article  PubMed  Google Scholar 

  • 75.

    Li, D. et al. Changes in phytohaemagglutinin skin-swelling responses during the breeding season in a multi-brooded species, the Eurasian tree parrow: do males with higher testosterone levels show stronger immune responses?. J. Ornithol. 156, 133–141. https://doi.org/10.1007/s10336-014-1104-2 (2015).

    Article  Google Scholar 

  • 76.

    Duffy, D. L. et al. Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav. Ecol. 11, 654–662. https://doi.org/10.1093/beheco/11.6.654 (2000).

    Article  Google Scholar 

  • 77.

    Boyd, R. J., Kelly, T. R., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Alternative reproductive strategies in white-throated sparrows are associated with differences in parasite load following experimental infection. Biol. Lett. 14, 20180194. https://doi.org/10.1098/rsbl.2018.0194 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 78.

    Folstad, I. & Karter, A. J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139, 603–622. https://doi.org/10.1086/285346 (1992).

    Article  Google Scholar 

  • 79.

    Bourgeon, S. et al. Relationships between metabolic status, corticosterone secretion and maintenance of innate and adaptive humoral immunities in fasted re-fed Mallards. J. Exp. Biol. 213, 3810–3818. https://doi.org/10.1242/jeb.045484 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 80.

    Cabrera-Martínez, L. V., Herrera, M. L. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina). PeerJ 6, e4627. https://doi.org/10.7717/peerj.4627 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 81.

    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321. https://doi.org/10.1016/0169-5347(96)10039-2 (1996).

    CAS  Article  PubMed  Google Scholar 

  • 82.

    Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction. Proc. R. Soc. B 272, 1039–1046. https://doi.org/10.1098/rspb.2005.3057 (2005).

    Article  PubMed  Google Scholar 

  • 83.

    Miller, M. R., White, A. & Boots, M. The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution 60, 945–956. https://doi.org/10.1111/j.0014-3820.2006.tb01173.x (2006).

    Article  PubMed  Google Scholar 

  • 84.

    Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941. https://doi.org/10.1126/science.1214935 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Santiago-Quesada, F. et al. Secondary phytohaemagglutinin (PHA) swelling response is a good indicator of T-cell-mediated immunity in free-living birds. IBIS 157, 767–773. https://doi.org/10.1111/ibi.12295 (2015).

    Article  Google Scholar 

  • 86.

    Moreno, J., de León, A., Fargallo, J. A. & Moreno, E. Breeding time, health and immune response in the chinstrap penguin Pygoscelis antarctica. Oecologia 115, 312–319. https://doi.org/10.1007/s004420050522 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 87.

    Zhao, Y. et al. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 210, 7–13. https://doi.org/10.1016/j.cbpa.2017.05.004 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 88.

    Zuk, M. & Johnsen, T. S. Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl. Proc. R. Soc. Lond. B. 265, 1631–1635. https://doi.org/10.1098/rspb.1998.0481 (1998).

    Article  Google Scholar 

  • 89.

    Hasselquist, D. Comparative immunoecology in birds: hypotheses and tests. J. Ornithol. 148, 571–582. https://doi.org/10.1007/s10336-007-0201-x (2007).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem